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Maximin Strategies and Elicitation of Preferences

Tokumaru Kimura

Introductory Remarks

[t is shown below that the weakening of general demand requirements does not widen the class
of satisfactory mechanisms in an essential way. And then, I can examine the case of discrete public
projects, costing nothing to undertake, when utilities are separable additive. Each individual sends
amessage m; to the center, chosen ina message space M;, knowing that the project will be undertaken
if a decision function F(m), from X;M; to R takes on a positive value, and not undertaken otherwise.
Side—payments fi(m) and gi(m) are associated with each occurrence. Agent i’s payoff is : fi(m) +
viif Fm) > 0, g(m)if Fim) < 0.

[tisimportant to notice that A;’s maximin message is a function of v; alone if m; = my(vi), Optimality

achieves if sgF(m;(vi), ma(va), ..., mn(vn)) = sgx= vi Vv, where sgx is the sign of x.

Method

* An Elicitation Scheme

M= (F (f, g), i= 1, n} isconstituted of n message spaces M;, a decision function
F from XiM; to R and n parts of side-payment functions (f;, g:) from X;M; to R such that the vector
of maximin messages leads to the optimal decision. To simplify the analysis, it will be assumed
that M; = R for all i, and that all the functions involved in the definition of the mechanisms are
continuous. The continuity property is inheri—ted by the m;. Now I can undertake to characterize
elicitation schemes. It is necessary that, for every m;, the sets H*(mi) = {m- eR"' / F(m,,
m) > 0} and H(m) = {m-;eR™ /Fm;, m)< 0} be non—empty. Otherwise, the
ith agent would sometimes impose the decision. THhen, given F, f, andg;, the ith individual

computes, for every m; :

fi(m) = MINfi(m) st m_ & H"(m))
(1) { ’é( (ml) = M£1Ngl(m) s.t. m-; & H'(m,»).

i

Agent i then compares ?i(mi) + vi and 'gi(m;) and chooses m; maximizing the smallest of those
two numbers.
A first requirement on the m;( - ) is that they should be monotone : if vi# Vi, then mi(vi) #

m; (V). Otherwise, there would exist, for some i, two different values vi and vi (with vi <
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vi ) associated with the same maximin message. Choosing v;, j # i, so that vi + §i v; > 0 and
vi + El v; > 0, the n tuples of message { mi(v{), mylvy), j # i} and { mi(vi‘)J,‘ m;i(vi), J #
i} would be identical and would therefore lead to the same decision, which clearly violates optimality.
Since M, = R, and the m; are continuous, they have to be monotone. In thiz case, given any increasing
function m;( - ), the class of pair of side—payment functions f; and g; eliciting m;(v;) as the unique

maximin message of an individual whose true valuation is vi, is characterized by :

J T, decreases
(28 & increases
l Timivi)) +vi = Fimi(vi).

If m; is a decreasing functuon, the above monotonicity conditions should be reversed. For example,
if m,(-) is assumed differentiable as well as increasing, a function T +) can be selected so
~i

as to satisfy 0 < ¥imi(vi)) < 1L/mi(vi) for all vi. Integration gives g and equation (2) yields T

+ +5 check that f; is decreasing. A similar construction could be carried out for

It is then eas:
decreasing mi( - ). In what follows, only increasing mi( - ) are considered.

The next step is to find what condition F should satisfy to guarantee the existence of increasing
functions m;( - ) such that sgF(mi(v1)), ....... ,  mnp(vn)) = sgx Zvi.

A necessary condition is that the equation F(m) = O can be written in a separable additive form.
This results from the following change of variables, made possible by the strict monotonicity of
mi(+), Call ¢ = mi'". Then vi = ¢ (m).

And F(mi(vy), ... , Ma(vy)= 0=>Z@i(mi)=0.

In addition, F should be increasing in all of its arguments at a point where it is equal to 0. Such
a point m* corresponds to a v* at which £vi=0.By increasing any of the v¥’s, the sum of the v¥s
is made strictly positive and so shows F. Since mi( - ) is increasing, this implies that F has that
property. Then, if F(m) > O (resp. < 0), it is because 2 vi > O (resp. = 0 ). Suppose this is not
the case - there exists m* = m(v¥) such that F(m*) is strictly negative (say) while £ v{ is positive.
Take v 4+ A e where e is the unit vector of R®, and decreasing from O is a continuous way until
the first O is reached, for some A*. At this point, v + 1%¥ e, F goes from negative to positive
values, which contradicts the fact that it is supposed to increase in all of its arguments, as was
stated in the above—mentioned.

Conversely, suppose that F is such that :

Fm) = 0 <S@(m) = 0 for some ¢, i=1, .., n. And also F(m) is increasing in all of its
arguments at points where it is equal to 0. Then there exist functions m;{ + ) such that F(m(v1), ...... ,
Minive)) = & @2 v = 0.

The second condition imposed on F implies that the @’s are increasing. Their inverse is well defind.
Choose the function m;( - )to be @ '. I next show that it is essentially the only way to pick the functions
mi( - ).

Call gi(m; (+)) = wi(+). [ am looking for functions wi( - )’s such that wi(vi) =

0SS vi = 0. Two cases should be distinguished :
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(a) If the number of agents is strictly greater than 2, the functions wi( - ) should be all linear with

equal slopes. * % *

Pick vi = O fori # k # ). Then, wi(vi) + w;(v;) + Z\ka(O) = 0& vi + v; = 0. This implies
1#Kk#)
that

(8} wi(v) + wi(—=v) — wi(0) — w;(0) = 0 for all v. Since S wi(0) = 0. This equation can be

written for the couple(j, 1), replacing v by — v.
{4) wi(—=v) + wi(v) — w;(0) — wi(0)=0 for all v, and for (1, i).

(5) wi(v) + wi(—v) — wi(0) — wi(0) = 0 forall v. Multiplying the second of those three equations
by — 1 and adding them gives :

(6) wi(v) + wi(—v) — 2w;(0)= 0 forallv, and for all i. Combining the equation (3) and equation
(6) yields :

(7) wi(v) — wi(0) = wi(v) — w;(0) for all i and for all j. Next, given v;, suppose that v; = —
(vi/n—1) for all j#1. Since T v, = 0,

(8) wi(vi) + é (wi(0) = wi(0) + (n— 1)wi(—vi,/(n—1)) =0, forallv, = wi(vi) — nw;(0) —(n—
1)wi(—vi/(n— 1)) = 0. From the equation (6) and the equation (7), wi(vi) = nwi(0) — (n— 1)
2wi(0) — wi(vi,/(n— 1))

(9} wi(vi) = (2n—n)wi(0) + (n— 1) wi(vi/(n— 1)). The only solutions to the equation (9) are of
the form wi(vi) = avi + b; where b; = wi(0). Then, from the equation (7), w;j(v;) = av; + b;,

and m;(v;) = ¢ '(av; + b;), with the by’s adding up to O.

(b) The second case is when the number of agents is equal to 2. Then, wi(+ ) and w( - ) should
have their graphs symmetric with respect to the origin.
For instances : ———,
If n= 2, the equation (9) is identically satisfied. The only condition is (3) which can be written

wi(v) + wa(v) = 0. for all v (since w,(0) + w2(0) = 0).

Verifications

( PROPOSITION 1 )

“In order for a function F( - ) to be an admissible decision function it should be such that F(m) =
0 <>Z@(m;) = 0 for some monotone ¢i’s. Then, the only way to select response functions m;( - )
is as follows : ‘

—1

(1) if the number of agents is strictly greater than 2, mi(vi) = ¢ '(avi + b) with a #
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0 Zbi = 0.

(2) if the number of agentsisequalto 2, mi(vi) = @ '(h; (vi)) where h, and h; are monotone functions,
the graphs of which are symmetric with respect to the origin. Finally, given any monotone m;( - ),
there are an infinity of ways to select monotone T and ‘g such that, confronted to the scheme
F, fi, gi, the ith agent will find m; (v;) as his unique maxi—min strategy. The class of such functions
is given by the equation (1).

Such schemes do not constitute as essential widening of the class of elicitation mechanisms. ”
* Remarks : s %k % % %k %k %

So far, it has been assumed that each agent’s strategy space was the whole real line.

However, situations exist in which it is known that the project is a public good for all agents,
so that the center can in such cases legitimately restrict announced valuations to be non—negative.
Then a public good that costs nothing to produce should always be undertaken, so that it isimportant
to explicitly introduce the cost C of the public good, where C is a strictly positive number. Consider
the scheme under which each agent pays what he announces. That is tosay : —————— The
truth is one of the maximin strategies when true valuations can be either positive or negative. In
the situation we are examining now, anindividual whose true valuation happens to be strictly greater
than C would not announce the truth as a maximin strategy since a strategy of C + & would lead
him to a strictly positive gain with certainty, while the truth would lead him to a zero utility also
with certainty. Notice, however, that such misrepresentation does not destroy optimality. And
all the elicitation schemes have that property. Truth will not be forthcoming from an agent whose
true valuation exceeds the cost of the project. However, opimality would not be violated by such
misrepresentation.

Let us now turn the determination of the optimal size of a public project.

Each utility function depends on a parameter 6 known to agent i alone. We impose the additional
requirement that 6 be a non—negative real number. Utilities are again assumed to be separable and
linear in money. In the first step, we will not demand that the budget of the center be balanced.
More precisely, we make the following assumptions :

* Assumptions : %k k %k %k % % %

Al: “ui (6 ; ai,y) = ai + vi(6 ; y), where a; is the amount of money held by A; and y is the level
of the public good. The function v is twice differentiable, and is an increasing concave function
of y. Formally : (av/ay)- (6 ;y)= 0, (&v/3y?) - (6 ;y) < 0 Vé,y. In addition, (av, 36) -
(6;y)2 0, (Pv/ayab)-(6, y)= 0, v(0;y)= 0Vé, v.

Without loss of generality, initial holdings of money are taken to be equal to 0.”

A2 : "The production technology of the public good is represented by a function x = g(y), where
X Is the input necessary for the production of an amount y of the public good. g( - ) is differentiable
three times and its derivatives satisfy : g(-)= 0, g’(-)= 0.”

This last condition indicates decreasing returns in the production of the public good. The
revelation game takes the following form : each consumer announces a value of his parameter
i, chosen in his strategy space S; = R*, possibly different from his true value 0. denoted by
acircle. The center computes the optimal level of the public good corresponding to those announced

values, y(6), assuming those announcements to be true, by solving in y the Samuelson optimality
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condition.

ov(by) _
1 = 3y g'(y).

The center also distributes side— payments f; (é) to all the agents. Because of the separability of
the utility functions, this procedure is legitimate since the optimal level of the public good does
not depend on the distribution of money in the economy. The ith agent’s payoff is then V( :9i ;0=
fi (6) + v( :91 ; ¥(6). Icanconsider the maximin strategies of this game, and investigate the conditions
under which they lead to the choice of the optimally, denoted y( o0). Later on, I can impose the
further requirement that the budget of the center be balanced :

1) i (6) = —gly ().

An elicitation scheme is a n—tuple(fi(§), i=1, ..., n) enjoying all of the above properties.

(PROPOSITION 1)

”If the budget balanced condition is not imposed, there are tax functions such that announcing
one’s true parameter is a maximin strategy.”
* Remarks : s % % %k % % %

From the work of Groves and Loeb, I can know that there exist tax functions for which it is a
dominant strategy to announce one’s true parameter. An example of such a mechanism is given by
fi (6) = 2v(6 ; y(O)—gly(6)— [2v(6 ; y(6-))—g(y(6-1)], wherey(6) and y(6-)) respectively represent
the optimal levels of the public good when all the agents are present, and when the ith agent has
been deleted from the economy. This mechanism is just one specification of a general class. No
element of this class can satisfy the budget balance condition, though, as was established by Green
énd Laffont. This is what motivates us to look for other solutions. To start with, and because
it simplifies the analysis, I can investigate the existence of tax functions for which the minimization
of the ith individual’s utility in 6, for j different from i, is obtained at the corner of Aj’s strategy

space, 6 = 0.

(PROPOSITION 1)

“If for every 6; and :Qi elements of R¥, the minimization problem admits of the solution § =
0, forj## i, then fi(6) should satisfy : f; (8, 0)= —g(y(8, 0)) + k, where y(6, 0)is the
optimal level of the public good corresponding to the vector of announced valuations(4, 0) (which
denotes (0, &, 0O, ... , 0) with a slight abuse of notation), and k is an arbitrary constant.”
* Proof : s sk %k % % %k %

Minimization of Ais indirect utility in 6, j # i, vyields a new function W( °6i ; 04) =
v(8:; 6, 0) that depends only on #, and 6. W(8:; 6) = £, (8, 0) + v(8: v(6. 0)). It is this

— 5 —



HEBUTRFRE $36%5 (AL - HEH)

function which is maximized in & by A;, giving {(aW( 0. 6),/(88)} = {ofi( 6., 0)/86) +

[{ov( 6, -y(6, 0)),/ 9y} * {ay(6, 0)/386}] = 0. In order for the solution of this equation
in & to have the solution 6 = 6, no matter what 6 is, it is necessary that this expression be
an identity in 6, when 6 is replaced by 6, This identity defines f; (6, 0). Dropping the circle
over 6 for simplicity of notation and rewriting the Samuelson condition for the case 6 = 0,1#
i, gives(av,/ay)-(6; y(6, 0)=g(y(8, 0) sothat(afi/26)-(6, 0)+ g8, 0) 3y 26)
(6, 0) = 0. Integration in & yields fi (4, 0) + gy (4, 0)) + k= 0, which is the condition
stated in the above—shown proposition. Its integration is simple. It means that if all agents but
A, want none of the public good, the remaining agent should bear the full cost of its implementation.
Free—riding is then impossible. It remains to show that the extremum obtained is indeed a maximum.

From the definition of f; (4, 0); the following expression is identically equal to 0.

oy -2V (656) _ _w(6;0) .
o6 a6, g = o
ow (6; :91) R = 0.
) ;9 ; 0= 6,
So that, differentiating once more :
by Il 9:;6) . __dw(ese) -
26¢ 6= 6 8:9,- 6, = 6
_Fv(bsy (6,0 ) (6, 0)
oy a6, o6

The second term of this product is given by differentiation of the Samuelson condition :

_ (8%v,/ 2y d6:) * (6:y(8)
14 (3y (8796) = 7wy (g)) — 52/ 3y (6:y(0)

which is positive for all 4, as A1 and A2 guarantee. Since (6%v,/ 9y ab) is positive (by A1),
it follows that the second order derivative of the maximand is negative.
k Examples : % % %k % %k % %
v(@: y)=6Logy. It is easy to verify that A1 and A2 aresatisfied. The Samuelson condition takes

the form : 26 = y(0g'(y(9).

@ ——— With a linear technolgy g(y) = vy, it becomes 26 = y(6) and therefore 8 = y(&, 0). The
tax function fi(6, 0)isthen fi(, 0)=-—g(y(6, 0)+k=—6+k.

® —— With a more general technology of the form g(y) = y*, similar computations would give
f(6, 0)= —A@)6®+k, where A(e) and B(e) are algebraic expressions depending on e.

Now, I can impose the additional requirement that the budget of the center be balanced.
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(PROPOSITION 1v)

“A necessary and sufficient condition for the existence of a balanced elicitation scheme for which

minimization in &, j # 1, takes place at the corners (¢ = 0) is that
15  g(y( = Zgly (6, 0)) forall g”

This condition tells us how the curvatures of the utility and production functions should be related.
Before proving this proposition, I introduce a definition.
% Definition : sk %k % % % %k %
A set of n functions &i(6) from R*" to R* are called sharing rules iff
1. Se(f) = 1 for all §such thajtz’ziﬁj # 0.
2. — &6, 0)= 0 forall 6.

An example of such functicns is.

&(6)=36/m )56 56 %0

m

* Proof : % % % % % % %

In order for minimization in 8, j # i, to be achieved at § = 0, it should be the case that :
£(6, 6) + v(0:; y(6, 6) =6, 0)+v(8:;y(6, 0) Vb, 6 6
Since y(6;, 6;) = y(6;, 0) for all 4, and since v( 6. y) is a non—decreasing function of y, it
follows that the inequality will certainly hold if fi(6, 6) =fi(6, 0)
V&, V6 ... . This is also a necessary condition. Indeed, for ?);: 0, the above-shown equation
reduces to fi(&, 6) = (6, 0), V&, V6. Adding up across i.

) =6, 8)=—glyd) = 2fi(6, 0)=-—Zg(y(6, 0)), the first inequality resulting from

the budget balance condition, the second from (15, and the last from Proposition IV. The condition
given in the theorem is therefore sufficient. That it is also necessary is easily seen : if it did not
hold, at least one equality of the above—shown would have to be violated. Given a set of sharing
rules, the following functions define an elicitation scheme : fi()= —g(y(8, 0)+ &(8) [Sgly(4,
0) —gy, i=1, ..., n

Since the expression in the brackets is always non—negative, and its coefficient &(6) also has
that property, the second term of this tax function can be interpreted as a rebate to agent i, having
paid —g(y( 6, 0)). This second term only depends on 8, j # i, and its value is minimized
at = 0. The individual is then confronted with the tax function defined in Proposition I, which
induces truthful revelation.

k Example a : % %k %k % %k % x
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v(6, y)= 6Logy, and g(y)=y. This is the example of the last proposition. Then, g(y(§)= 28 =
Sg (v(6, 0)). The condition of Proposition IV is satisfied at equality. No rebate is actually necessary
and budget balance achieves with f(§ = — 4.
kx Example b @ s 5 % sk %k %

If v(6, y)=6y"*® and g(y)=y, simple computations lead to : g(y(#)=0.25(26)* > 0.2526 = Zgly
(&, 0))

k Example ¢ @ sk %k % %k % %

If v(6, y)=6y"® and g(y)=0.67y'°, g(y(§) = (£6./2)= 2(6.2) = 3gy(6, 0)).

The last proposition deals with the case when condition '

15 does not hold. Even though it is not possible to guarantee that minimization in 6 is achieved

at 4 = 0, itis nevertheless possible to exhibit an elicitation scheme.

(PROPOSITION V)

“Given sharing rules & (6), the functions fi(8) = () + &(8) - [—=fF(6)—g (v()] where ff(§) = —
vig, v(@)—gly(6, 0)N+v(6, y(6, 0)) constitute an elicitation scheme.”

Concluding Remarks

It is easy to check that the budget balance condition holds. Next I can show that h(8)= —Sf¥(6) —
g(y(8) = 0 forall .If = 0, theny(0) = 0, ff(0)=0, and g(y(0))= 0. It follows that h(§) =
0. In addition, h is differentiable and

+ ov(6;y(8)+g'(y(4, 0) ay(é, 0)

(18 (oh(6), 26) = 26 * o6
ov(é, y(6,0)  ov(, y(4,0) * y(8, 0) +
o6; oy o6,
ov(6, y(8) oy—g'(y(6) oy
2% * T aa * as
The last two terms, after factoring out ;}9’ . can be seen to add up to 0, by definition of
y(6). This is SAMUELSON condition. The second term and the fourth term, after factoring out
_@_yé()g._,o) add up too,for the same reason.

Since y(6) = y(6, 0), the first and third term add up to a non—negative number, because of
the cross—derivative assumption A 1. The partials of h(6) are non—negative at every point and

h(g) = O ; therefore h(4) is everywhere non—negative.
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