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Introduction

Even in quite simple static models of choice under uncertainty, the response of optimal
choice to changes in circumstances presents varied and interesting problems. The examples
presented below concern the optimal amount or level of an uncertain venture to be under-
taken by an expected utility maximizing risk averse decision maker (dm).

Let (82, F, P) be a probability space in which the universal event £ represents all possible
developments in dm’s environment and P represents his personal probabilities. dm is vis-
ualized as having certain initial investments, commitments and plans. If he does nothing
to change these, his wealth at some future date is given by the random variable X (w) called
his initial prospect. w, an element of , is a particular development or sequence of events
in dm’s environment.

He is considering a new venture each unit of which will and Y (w) to his future wealth if
w is realized in his environment. If he chooses & units of the venture X (W) + Y (W) be-
comes his new prospect. He is presumed to choose & from his admissible set to maximize
E ¢ (X + oY) where ¢ is utility of wealth and the expectation is with respect to personal
probability P.

The venture might be purchase or sale of securities, an insurance policy, a business con-
tract, a position on a futures market or any undertaking whose effect can be approximated
by an additive random variable.

Method — Basic Concepts and their Models —

Let 7 (a) = E¢ (X + aY) be dm’s expected utility function. If (1) ¢’ >0, }(I_Tm<p' x)=0,
(2) ¥” <0, ¢ monotonic, (3) P (Y > 0) > 0, P (Y<0)>0,(4) ¢ (X +aY), Yo' X+ «
Y), Y2 ¢" (X + a Y), are integrable for all a € RY n is strictly concave, assumes a unique
maximum on R, and has the continuous derivatives n’ (a) = EY ¢’ X+aY),n" (@) =EY? ¢"
(X +aY). (1)—(4) are assumed throughout this paper.

The choice & that maximizes 17 for a € R lies in an open interval (0, a*) of favorable
choices (better than a = 0) if @ > 0, or an interval (a*, 0) if @ < 0. Let <a*> designate
whichever interval is relevant, i.e., <a*> ={ wEn(X+aY)>Ev(X) } . If 7" (0) =0, then
a =0, <a*>= ¢. Expected utility functions for &> 0 (n (@) and <0 (n, (). Inspection
of the expected utility function readily verifies [PROPOSITION I: V ¢ €R, 7’ () & (a—a),
where £ means “is equal in sign to.”; In most applications, & must be chosen from some
subset of R—e.g., some securities can only be purchased in positive amounts, there will
usually be an upper bound on the amount of a venture determined by dm’s resources. If



a is the admissible set, let &z be a restricted optimum if not exists. az maximizes n () for
aca

For problems like the above with just one venture under consideration it is usually con-
venient to first obtain or characterize &, o* and then take account of the restrictions as
follows: (i) if @ €a, then au = ¢, (ii) if ¢ N <a*> = ¢, then ag = 0, (here, I can assume a =0
is always admissible), (iii) if neither (i) nor (ii), let & = inf. {a N <a*>N (&,oo)}and o = sup
{a N<a*> N (-9 « } . Choose aq so that 1 (ap) = max 7 (), n () . oy €a,then

&g = 0. If not, &, doesn’t exist but V> 0 and ae can be found 3 ae € and n (%) >

n(e,)— €.
In the next section, I can study responses of @ and a* to selected kinds of changes in X,
Y orP.

Examinations and Verifications:
— Developments of Simulation Models by Computational Procedures —

(a) Uniform Changes in X or Y?:—

Write X = W+b,Y =V + ¢ where b, ¢ are real numbers and W, V are random variables
defined by the equations. If W remain fixed (as a fn on Q) while b changes I say there is a
uniform change in X. In applications, an increase in b represents a certain or non-contingent
increase in dm’s wealth. Examples might be a completely unexpected inheritance, cancella-
tion of a debt, or revaluation of a sure asset. The analysis would also be relevant to the
consideration of two individuals or groups of individuals who differ mainly in their general
levels of wealth. An uniform change in Y is an increase or decrease inc. If Y isa common
stock it is natural to think of V as the prospective return (dividends plus eventual sale value)
to holding a share and—c as the price of a share. If the price changes with no change in
returns associated with various environmental contingencies, there has been an uniform
change in Y. I would like to know, hereby, how a, a* respond to changes in b, ¢ s0 I can
assume that W, V are fixed and b, ¢ allowed to vary. Expected utility may then be written
as follow: 1 (a ;b,c)=E¢ (W+ b + a (V +c))and the unique optimal choice for given b, ¢
denoted by & (b, ¢) which is defined implicitly by the following equation 1 :

1: Dgn(ub,c)=E(V+e)¢(WHb+a(V +c))=0,
where D7 is the partial derivative of n with respect to a. If 3 €>03 81 <€ =20 (X+
aY+6),Y¢' (X+aY+8)and Y2 9" (X +aY +6)are integrable for all « € R, the condi-
tion proposed in this case is imposed along with (1)—(4). And then the necessary continuous
second partials of n can be shown?) to exist by the implicit function theorem in the following

equations:
2 : Dpa={-Dib nDaah}=—0" E(V+o)¢" W+b+a(V+e)= ~AT EY 9"
X+aY),

3: Dca={-DinDaan}=-0" [E¢' (X+aY)+aEYy" (X+aY)] =
A E¢' (X+aY)+taDpa,
where Déh stands for second partial derivative with respect to g and h, and where A = Daa M
=EY? ¢ (X +a Y) <O0since 9" <O0.



The two terms following the last equality in equation 3 are close analogues of the sub-
stitution and income effects in Slutsky’s equation for consumer equilibrium. Since A <0
and ¢" > 0 the first term is always positive. Db a will be called the wealth response, D¢ &
the venture response, and & Dp a the wealth effect.

A number of circumstances in which one might determine at least the signs of Dy & and/or
D¢ & were examined in Hildreth’s paper4) and illustrative applications sketched. Among
these results are [PROPOSITION II: If absolute risk aversion r (x) = {— ¢" (x)/¢' ()} is
constant then Dy & = 0, D¢ & >0.] [PROPOSITION III: If r' < 0, ¢"'is monotonic, X is
independent of Y, and ¢ (X + y) is integrable for ally ER and n = 0, ....., 3; then EY &
& $ Dp&] [PROPOSITION IV: If dX 3 (Y > 0) = (X >X), if @ > 0, and if ' < 0; then
Dp a >0.] By the way, the first condition of PROPOSITION IV might often be realized
if the venture is expansion of an existing business. The expansion will only increase net
return under conditions such that the original business would have done pretty well. The
proposition says that if such a venture is favorable, the optimal size of the venture is an
increasing function of the entrepreneur’s wealth.

Now consider the response of a*, the boundary of the favorable set, to uniform changes
in the initial prospect and the venture. «* is the nonzero solution (if ﬁ{ﬂa nonzero solution
seta*=0)ton(;b,c)=Ev(W+b+a(V+c)=n(0;b,c)=E@(W+b). Again hold
W, V fixed. Let a* (b, c) be the solution corresponding to a pair (b, ¢). Let 8 (a;b, c) =
n(;b,c) —n(0;b,c)=Eo(W+b+a(V+c) —Ey¢(W+b). By the implicit function
theorem,

4 : Dpa*={-Dp6/Dg8}=—(Dg0)" E [¢' (X+a*Y)—¢ (X)]

5: Dea*={-Dc8/Dg0}=—(Dg6)" a* (B¢ (X+a*Y)),
where D 0 =EY ¢' X +a*Y)E — q*
and Dc = o* (E ¢’ (X +a* Y)) £ a* (¢' > 0).
Thus by equation 5 , D¢ a* > 0 except possibly when a* = @ = 0. When o* =0, it can be
shown®) that any uniform increment in Y leads to a positive o* so I may conclude that
[PROPOSITION V: a* (b, c) is a strictly increasing function of c¢.] This means that a
uniform improvement in the venture enlarges <a*> if positive amounts were originally
favorable and may diminish <a*> or shift it from the negative to the positive half line if
negative amounts were intially favorable. It appears that sign of Dy o* is indeterminate
without further assumptions.

I now consider responses of a, a* to other kinds of changes in X, Y, P.

(b) Improvement in X or Y on an Event:—

For any random variables V and W, let V2 W mean V > W as.. Let VS W means
VR Wand P(V>W)>0. For VS WIsay “V exceeds W.”

Suppose a dm’s initial prospect improves in the following sense—X is replaced by X + Z
where Z S 0. I am interested in the effect on the optimal choice a and his favorable set
<a*>.

Such a change could come about in many ways. A change in tax laws might mean that



dm will have a lower tax liability under some contingencies. These contingencies then
comprise the event (Z > 0). If legislation establishes limits on medical malpractice liabilities,
the current prospects of many doctors are raised under certain contingencies. Price floors
for farm commodities raise the current prospects of many farmers under contingencies that
would otherwise be associated with lower prices.

Let n () be the expected utility function with the original initial prospect and 6 (a) be
the expected utility function with the improved initial prospect, n (&) =E ¢ (X + ¢ Y), 8 («)
=E¢ (X +Z+aY) Leta, a* be the optimal choice and the boundary of the favorable
set for expected utility n and o, a* has corresponding meanings for expected utility 6.
[PROPOSITION VI: Consider a dm whose initial prospect changes from X to X+Z where X+
Z exceeds X. Let Y be the venture considered in both cases. Let &, a* be the optimal choice
and boundary of the favorable set before the change and @, a* afterward. Then, (i) YZ S 0=
o <o and a* <o* (i) YZ=0as. = ad=a&and &% = o*, (iii) YZ Z 0= &> & and T* > a*]
Proof of (i) ..... (By the mean value theorem, ¢’ (X+Z+aY)=¢' X+aY)+Z " (X +
GZ +aY)where 0 <G (w)<1. Let0 () =E¢pX+Z+a¥Y),n(@=EvX+aY).
Then, " () = EY ¢’ (X + a Y) and, the equation 6 0’ (0) =EY ¢’ (X+Z+aY)=7
(@ + EYZ 9" (X +GZ + a Y). Recall ¢ <0. Then, ¢ <0,if EYZ S0, 6" () <7’ (@)
V a €R. Thus, 8’ (&) < 0and @ < & by PROPOSITION I. To show &* < o*, I consider
three cases. (a) <0 <a. Then, a*<a<0<a<a* (b)0<a<a Then (o)<
n" (o) implies 6 (&) — 0 (0) <7 (&) —n (0) and § (&) — 6 («*) > n (@) — 1 (¢*) =7 (&) —
n (0). Thus, 6 (&) — 0 (0) <0 (&) — 0 (a*) and 0 (a*) < 6 (o) which means o* & <a*>
= (0, a*) so a* <a*. (c) a<a<0. Then 8’ (a) <7 (2)=0(d)—0(0)>n(a) —n(0)
and 0 (@) — 0 (a*) <n (&) ~n(a*)=n (&) — n(0). Thusd (&) —0 (0)>0 (¥) — 0 (o)
and 0 (a*) > 0 (0) or a* € <a*> = (a*, 0) so a* <a*) Proof of (ii) ..... (From the equa-
tion 6 ,YZ=0as.20 (0)=n" () VaE R s00 (a) — n (a) is a constant.) Proof of
(iii) ..... (If YZ 2 0, then, —=YZ S 0 and the argument for the assumption (1) applies to —Y.
But reversing the sign of a venture reflects n and its points of interest about the n -axis.)

It can readily be verified that if X deteriorates, i.e., changes from X to X — Z with Z
S 0, then the inequalities of (1) and (3) are reversed. Note that PROPOSITION IV does
not apply if Z > 0 a.s. since the requirement that Y is not a sure thing (P (Y >0)>0,P (Y
< 0) > 0) would then preclude any of the conditions.

(i) says that a dm will decrease his (unrestricted) demand for a venture if his initial pro-
spect improves on an event where his venture offers a positive (non-negative and not a.s. 0)
return. This further illustrates the loose, informal characterization®) that the attractiveness
of a venture may be regarded as a combination of expected return and insurance value, the
latter loosely defined as the tendency of the venture to offer rewards on events where the
initial prospect is low. Alternatively, one might say that as X improves on an event A, the
positive contribution of Y on A is less needed if " < 0. For example, I would expect
demand for disability insurance to diminish if the government provides extensive tax deduc-
tions for the disabled.

Now consider dm’s response to an improvement in the venture Y with X remaining un-



changed. Again, let Z > 0. Compare &, o* with &, &* where the latter are optimal amount
and boundary of the favorable set for the venture Y + Z. For the response of a*, I have the
following generalization of PROPOSITION V. [PROPOSITION VII: Consider a dm whose
prospective venture change from Y to Y + Z with Z > 0. Let o* be the boundary of the
favorable set before the change and @* afterward. Then @* > a*.] Proof of PROPOSI-
TION VII ..... (Letn (@) =E¢ (X +aY)and 0 (o) =E ¢ (X + a (Y + Z)) be the respective
expected utility functions. « Z >0 for a > 0 and a Z <0 fora <0. Since ¢ is increasing,
0 (o) —n () £ Thus, a* >0 =0 (a¥) > n (a*) =1 (0) = 0 (0) so o* €(0, ¥*). Also,
a* <0 =0 (a*) <0 (0) so a* & <a*>).

I can expect the response of the optimal choice to an improvement in Y to typically be
positive (& > &). However, counterexamples can be produced to show this is not universal.”)
The next two propositions give a number of sufficient conditions for positive response. Note
that if Y + Z > 0, then @ = o so this trivial case is not included. For any random variable
W and any event A, let WA = IAW where 1A is the indicator of A. [PROPOSITION VII:
Suppose a venture improves from Y to Y + Z where Z > 0. Let n (a) =E ¢ (X +a Y)and
6 (@=E¢(X+aY+aZ)be the expected Utility functions with n' (&) =6’ (&) =0. Let
A=(Z>0). Then, ()0 () —n (&) £a,([i)a>0=>a>0,7 <0=a&<0 and each of the
following implies @ > &. And (iii) & @ <0, (iv) @ >0, Ya $0,(v) & <0, Ya 2 0, (vi)
(X, Y) independent of A, YA + Z = 0, (vii) YA $0,YA +Z 20, (viii) & <0, 9" >0.]
Proof of PROPOSITION VIII ..... ((i) follows from the definitions of 6, 7 and the fact that ¢
is increasing.

7: 0(@=EXY+2)¢X+aY+aZ),n(@=EY¥ X+aY).
8: 0'(0)—n"(0)=EZ¢'(X)>0.

By PROPOSITION I, @ >0 = " (0) > 0. And by the equation 8 , this implies 8' (0)
>0 which, by PROPOSITION 1, implies & > 0. The second half of (ii) is similar. (iii)
follows immediately from (ii)). By the mean value theorem,

9: ¢X+taY+taZ)=¢'X+aY)+taZ¢" (X+aY+aGZ),
where 0 <G <1. Combining the equations 8 and 9 |,

10: 0'(@—n"()=EZ¢'X+aY+aZ)+aEYZ¢" (X+aY +aGZ).

In this equation 10 , ¥’ is positive and Z & 0s0 EZ ¢’ (e) > 0. Since ¢” < 0;a YZ S
0=0"(0) — 7" (1) >0. Thus, (iv) implies 6" (&) > n’ (&) and (v) implies 8’ (&) > 7’ (&).
Either justifies @ > & by PROPOSITION 1.

Note that, using (ii), one could substitute “max{q, @}” for “@” in (iv) and “min { @,
&} ” for “a” in (v). Let A=(Z>0). Then,X+aY+aZ=X+aY on A° and an alterna-
tive expression for the difference in expected utilities is

11: (-7 (@=E(Ya+Z)¢y X+aY+aZ)—EYa ¢ (X+aY). By the defini-
tion, EY ¢’ (X + & Y) = 0, so if (X, Y) are independent of A, the final term of the equation
11 is also zero. Then (Ya +Z) > 0 implies that the next to last term is positive so 0’



(@) —n (@)>0and @ >a. This proves (vi).

The conditions in (vii) make 6’ (a) > 1’ («) for all and therefore, for &. Note that Ya =
0,Ys +Z=0isruled out by Z4 > 0.

To establish (viii), again use the mean value theorem,

12: ¢"XtaY+taZ)=¢" X+aY)taZo" X+a¥Y+aGZ),
where, as before,0 <G <1. Differentiating 12 ,

13: 0" (@)—n"(@=E(Ya+2Z)* ¢"X+taY+aZ)-EY] ¢"(X+taY)=
E[(YA+Z)? —Ya ]l ¢" (X+aY)+aE(Ya+2)? Zy"' (X+aY +aGZ).

The first term on the last line of the equation 13 is always negative and, if ¢’’’ > 0, the
final term has the sign of a. Thus 8’ (&) — 7" () < 0 for & < 0. Together with 6’ (0) >
1’ (0), this implies ' (&) > 1’ (o) for @ < 0. Consequently 8’ (&) > 7’ (&) if @ < 0 and this
means & > &. Recall that decreasing absolute risk aversion (r' < 0) implies ¢”"" > 0.

(¢) Change in Belief in an Event:—

Suppose dm’s beliefs about events in his environment change in the following way. An
event A € F becomes more probable and its complement A® correspondingly less probable
while the conditional probabilities of all events given A (and therefore given A®) are un-
changed.

A 1976 example might have been a piece of news that increased dm’s subject probability
that Carter would be elected president. If the news were unaccompanied by anything that
would change dm’s views about what Carter would do if elected or what Ford would do if
elected, then unchanged conditional probabilities seem reasonable.

Alternatively, suppose a businessman has proposed a contract to another party and is
waiting to see if it is accepted. News favoring probable acceptable acceptance might not
change his ideas about what will happen if acceptance is received or what will happen if
rejection is the outcome.

Other examples could concern legislation under consideration that is relevant to dm’s
affairs, litigation, or a bid to be let by a public agency.

Whatever the context, let (2,5, P) reflect revised beliefs. For any B € F I can have PB
= (PA/PA) P (A N B) + (PAS/PA®) P (A N B°).

For any random variable W define EwW =7 WdP = (?A/ PA) EAW + (’I3AC /PA®) Eac W,
where E, is conditional expectation given A. The new expected utility function is 6 (a) =
Fo(X+aY)=(PA) Ea o (X+aY)+(PA) Eac o (X +a).

Let 8’ (@) =0, 0 (a*) = 6 (0). Note that if the vector (X, Y) is independent of A then
0 (o) =7 (o) so & = &, a* =a*. How do (&, @*) compare with (&, &*) under non-independ-
ence”?

It will save time to generalize the problem a little before developing some results. Let
A\, 0 <X <1, be the revised probability of A and continue to assume unchanged conditional
probabilities. Define Px (B) = XA P; (B) + A\* P, (B), V B € F where P, (B) is conditional
probability of B given A, P, (B) is conditional probability of B given A®, and A* =1 — A



ForA€ [0, 1], let

14 : n(a;>\)=EA«p(X+aY)=f80(X+aY)dP>\=?\n(a;1)+?\*n(a;0).

Define & (A) by Da 1 (& (A), A)= 0 andlet a* (A) be the nonzero solution (if there is no non-
zero solution a* (\) = 0) of » (a* (A); \) — (0; A) = 0. Then, [PROPOSITION IX: With
the above definitions, & (A) is monotonic and is strictly monotonic if & (1) # & 0). ais
continuous on [0, 1] and is continuously differentiable on (0, 1).] Proof of PROPOSITION

15: Dgn(a;N) =ADan (a; 1)+ A* Dy 1 (e; 0)

Suppose a (1) > & (0). By definition Da 7 (& (0); 0) = 0 and, by PROPOSITION I, Da
n (a (0); 1) > 0. Thus, sometimes writing @ for & (\), Do M (& ; A) = A Da M (a; 1)+ \*
Do 7 (605 0) > 050 & (A) > & (0) for 0 <A< 1. Similarly, Da 7 (é;;A) =X Da 71 (&3 1) +
A* Do 1 (6y;0) = A* Dy, 0 (450) <00 & (M) <&(0).)

Now suppose 1 > u > .

16: Dgn(an, ) =uDgn(an;1)+u*Dyn(an;0)>ADyn(an; 1)+
A* n(an;0)=0.

So, & (1) > & (), and & is strictly increasing. A similar argument reveals & strictly decreas-
ing if & (1) <& (0). If & (1) = & (0), then putting a = & (0) in the equation 15 makes both
terms on the right vanish and Dy 7 (&; ) =0 =& (A) =& (0),0 <A <1. By assumptions
(1) to (4), and (5), Da 1 (a; \) has continuous nonzero partial derivative D2q 1 (a; M) <0and
from the equation 15 , Dix 7 (a;2) = De 7 (&; 1) — Da 1 (a; 0) s0, by the implicit function
theorem, & (A) is continuously differentiable on (0, 1). Note that for & M=a@),al)=
constant is continuous at 0 and 1. To obtain continuity at 0 and 1 when & (1) # & (0), sup-
pose Ap 11 and take @ <& (1) <& Note Da 7 (a; 1) >0 and Da n(a;1)<0. Da 7 (q;

An) =An Dy 7 (@; 1) + A* Da 1 (@; 0) which is positive whenever Ay > — At (D (@;0)/De
(@; 1)) so the latter implies & (\n) > @. Also, De 7 (&; An) = An De 7 (@; 1) + Aj Dan
(@; 0) which is negative whenever Aq > — Aj (Da 1 (@;0)/Da 1 (&; 1)) making & (A\p) < .

Since @, & can be arbitrarily close to & (1) and the necessary inequalities are realized for

An sufficiently close to 1,&(An) > &(1). Continuity at 0 is similar.

Concluding Remarks

PROPOSITION IX tells us that an increase in the subjective probability of A, conditional
probabilities unchanged, moves in the same direction as if A became certain and that the
movement is smooth. These conclusions also hold for the boundary of the favorable set.
[PROPOSITION X: o* (\) as defined above is monotonic and is strictly monotonic if a* (1)
#a* (0). o*is continuous on [0, 1] and continuously differentiable on (0, 1) except possibly
where a* (\) =0.] Proof of PROPOSITION X ..... (Recall that <a*> ={q: 1 () > 7 (0)}and,
except when 7' (0) = 0, is either (a*, 0) or (0, a*). I first show that for 0 <X < 1,a* (\)
lies between a* (0) and a* (1).) Let



17 © E(a,N)=n(a,\) —1n(0,N).
Then, £ (0, \) > 0= aE<a* (N>, ie., <a* (\)>=
{a: E(a,\)>0}. Ihave

18 : &(a,N)=AE(a,1)+A* £ (,0).
If a* (1) = a* (0), then setting « = a* (0) in the equation 17 shows £ (ay, \) =0 VAE
[0, 1] so,a* (A) =a* (0). Ifa*(0)<a*(1),

I can consider three cases.
M 0<La*(0)<a*(1). Then,for0<A<I,E(ap,\)=
NE(ap, D +A*E(a),0)=A*E(af,1)>0
so, a* (0) C <a* (\)>.
E@,N)=NE@* D+ A E(a),0)=2* £ (o], 0)<0
so, a* (1) € <a* (\)>.
Therefore, 0 <a* (0) <a* (\) <a* (1).
(D) o*(0)<a*(1)<0. Then,
E(ag, N =NE(@), D+ E(ef,0) = E(a¥, 1)<0
s0, a* (0) € <a* (\)>.
£, N)=NE(@], )+ E(af,0)= *£(af,0)>0
s0, a* (1) C <a* (\)>.
Therefore, o* (0) <a* (A) <a* (1) <0.
() o*(0)<0<a*(1). Then,
E(ad, N =NE(ay, 1)<0, soa* (0) & <a* (\)>.
£ (o], N)=A* £ (a*, 0)<0,s0 a* (1) ¢ <a* (\)>.
This means <a* (\)> C [<a* (0)> U <a* (1)>] and o* (0) <o* (V) <a* (1).

Now I can show u > X = a* (1) > a* (A) for each of the three cases. This completes the
proof of monotonicity since a* (1) < a* (0) just involes interchanges o and 1 in the proofs
for the case of a* (0) <a* (1).

M X, w=piX, D+urE@X,00>NE (X, D+A*E(X,0)>0
so, a* (\) C <a* (u)>,

(M) £ (X, u) <0so0,a* (N\) € <a* (u)>.

(M-a) Suppose a* (\)<O0,then & (X, ) =u & (aX, 1) +pu* £ (aX,0) <0
and a* (\) 4 <a* (u)>.

(Ib) a* () >0, then £ (o, w) = p & (aX, 1) + p* £ (aX, 0) <O
and o* (A) C <a* (u)>.

a* (\) is defined implicitly by

19: £@X,)=n(X,N)-n(0,0)=0.
By the implicit function theorem,

20: Di=—(Dr£/Dag)=—(n(aX,1) —n(eX,0)/Dan (e, V),
which yields a continuous derivative except when Da 7 (eX,N) =0. So, I recall that Da



(0*)S—a*8—& ThusDan(eX,N)=0=a*(N)=a(\)=0.
To show continuity of a* (A) at uz o* (1) =0, let @ <0 and M - pu.

200 E(@ M) =ME@ D+ ME@O=E@M T Ra - E@ 1)+
(\n — #*) £ (3, 0).

£ (o, ) <0, so as n becomes large and the last two terms of the equation 21 become
negligible, ¢ (@, Ap) becomes negative implying that (An) > @ for sufficiently large n (recall
that for all , £ (0, \) = 0 and that £ (a, A) < 0 = a & <a* ()>).

Also, if @ > 0, £ (@, A\n) < O for sufficiently large n. Thus <a* (A\n)> C (@, @)for
arbitrary @ < 0 < & and n sufficiently large; hence the boundary a* (Ap) = 0. Continuity at
A =0 and A =1 can be shown in a similar fashion.
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EY ¢" (X+h+aY)=EY ¢ (X+aY) For lhI<s and ¢" increasing the integrand on the left
is dominated by 1Y "' (X + 6 + « Y)| which is integrable by assumption (5). Equality then follows
from the dominated convergence theorem. Note that monotonicity of ¢"' was assumed in the
assumption (2). For decreasing the integrand would be dominated by 1Y ¢ (X + 8 + a Y).

4) Hildreth, C.: Expected Utility of Uncertain Ventures, J. Amer. Stat. Assoc., 69,9 ~ 17 (1974)

5) By PROPOSITION I, & £ ' (0) = EY ¢ (X), a* $&. If a* =& =n' (0) = 0, replacing Y with
Y + c changes ' (0) to E (Y + ¢) ¢’ (X) > 0 and &, a* also become positive.

6) Hildreth, C.: ibid. 10

7) Let PA = (e/e + 1) where e is the base of natural logs. Define X (w) =0 forw € A and X (w) =
3forwe A°. LetY(A)=1,Y(A9=—-1andZ (A)=1,Z (A% = 0. If o(x)=—eXit can be
shown that & = 2 while 6’ (2) < 0 indicating & < 2.
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