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Introduction

First of all, I would like to show the fundamental system simulator expressions that I
had used in performing computations and calculations by operating CU (IBM) AMDAHL S.
470-V/8 computer machine in Columbia University. (N.B.: The computer programming
lists that had been printed out are omitted to show herewith in this paper for want of space.
Because various routines for computations and calculations have 52,000 line sentences in
total).

Of course, the following fifteen fundamental system simulator expressions in all are
defined as the principal framework that logically supports various argumentations,
examinations and verifications in this paper.
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SSE (4) y:=ZiA+ us,
SSE() y=ZA+u,
SSE(6) N NZ'Z)'Z'Z2Z(Z'Z)™,

oo

SSE() ye=Rasue-s, =1, ai<oo,
Jj= j=
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SSE(Y) yi=Ayi1+ u.,

By the way, the purpose of this paper is to do examinations and verifications on various
analytical results that White et al. had drawn out concerning with the Heteroscedasticity
in models (i.e.—— System Dynamic Models (SD Models)) with lagged dependent and
endogenous variables. Especially, herewith in this paper, I would like to verify that some
analytical results among them hold when exogenous variables are replaced by lagged
endogenous variables”. Here, to simplify the proof that lagged values of v, appear among
the x., it is assumed that the above-shown system simulator expression (i.e.—— SSE (1))
could be defined by the implications that are explained by the SSE (3).

In their papers, White et al. considered a slightly more general specification than that
above by allowing the exogenous regressors to be stochastic. They observed that their
results generalize to allow some of the x.to be endogenous variables, the appropriate
estimator of A now being some form of instrumental variable estimator. These variations
do not exhaust the possible situations faced by applied researchers, however, even if one
concentrates only upon the classical regression model. In particular, the important case
when some of the x. are lagged values of ., is not to be covered ; but it is very common
for researchers to account for system dynamics by the use of such lagged variables®,

Generally speaking, the regression model and its various extensions are perhaps the
most widely used technical means in applied econometric and system dynamics theories.
Because of the central role much effort has been devoted to the construction of diagnostic
statistics that would reveal possible failures in the assumptions underlying it. One of these
assumptions has been that the variances of the distributions and of distrubances be
constant or homogeneous homoscedastic; a failure of this condition leads to invalid
inferences whenever the traditional formula for the Ordinary Least Square (OLS) variance
is utilized in the construction of “t statistics.” For this reason, a number of proposals have
been made that seek to eliminate any heteroscedasticity.

Such knowledge seems to be presumptuous. It is difficult enough to specify the
regression part of the model, about which there is generally some theoretical guidance,
without being required to state exactly how the error variances change. Therefore, the
proposal by White et al. to make allowances for any form of heteroscedasticity by
adjusting the OLS formula variance has considerable appeal.

Here, let me discuss the White’s analytical result”. His analytical result may be
formalized in the following way. Consider the regression—type SSE (1). In this SSE (1), the
1% p nonstochastic vector x: are exogenous and disturbances #. are independently but not
identically distributed with zero means and variances ¢?, i.e., the disturbances are
heteroscedastic. If the N %1 vector v is such that y=X A + y, with X and « defined in an
obvious way, the covariance matrix of the OLS estimator of &, A =(X'X)"'X"y, is td be
the SSE (2). And furthermore, in this SSE (2), X =FE(uu’)=diag{c?}.

In White’s paper®, he proposed that the SSE (2) be estimated by replacing 3} by )3 =diag

~ ~ @s.
{#}} where 2,=y.—x:A. White demonstrated that A— A and that the proposed
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estimator of the covariance matrix is strongly consistent.

By the way, in this paper, the followings consist of the four PARTS: THE PART
II(METHOD) states the suppositions needed for the proof and also a LEMMA that is
central to it. THE PART III(EXAMINATIONS AND VERIFICATIONY) gives
examinations and verifications concerned about the strong consistency of the estimators in
the system dynamics models. And the PART IV (SIMULATION EXPERIMENTS BY
OPERATING CU(IBM)AMDAHL S.470-V/8 COMPUTER MACHINE AND THEIR
RESULTS) shows some limited system simulation experiments to gauge the success of the
estimators. Finally, the PART V (CONCLUSION) provides some concluding remarks.

Method

First of all, for the SSE (3), I can make the following suppositions :
Supposition (a)— —All the zeros of 1— 32, A;Z7 =0 lie outside the unit circle.

N
Supposition (b—If Zi=(ye-1, === , Vi-p), limN—oo[‘lﬁtglE(ZtZ;): VvV >0.

Supposition (¢)——The u¢, t=1,2, == | are martingale differences with E(usu: )=0, s+ 1,
and E(usu:)=0i<0’°<®, s=1.
Supposition (d——There exist positive constants 8, D such that
E(| uiujuru*?)< D<o,
v (i,7,k [=1,2, ).
With respect to Supposition (b), Suppositions (c) and (a) ensure that limy-e

N ‘1§1E (Z.Z:) is bounded. The exact necessary and sufficient set of conditions needed to
ensure nonsingularity are difficult to specify precisely. When p =1, the condition is limy-w
N "22320 A%ig?_;>0, showing that a restriction upon the behaviour of o7 is necessary. A
sufficient condition to ensure Supposition (b) would be 02> 52>0. By placing the uniform
lower bound on ¢ along with the SSE (4), this is sufficient to ensure that N “é}lE (utZ:Z:)

is non-singular for N sufficiently large, a condition required when the consistent
covariance matrix is to be used when forming test statistics.

Now, I can prove that A A and the SSE (6) is a strongly consistent estimator of the
covariance matrix. In order to do this, frequent use would be made of a strong law of large
numbers for martingale differences due to Chow’s paper®. So, therefore, I can also describe
the following LEMMA :

N
(LEMMA) :“If {x., F., t=1} is a martingale difference sequence such that Z!IE [xe?1/

N a.s.
12 < oo, for some @ =1, then N"tZ!lXt——>0”.

Having shown the strong consistency of the SSE (6) it would be possible to extend the
results derived here to encompass the case of a regression model of the SSE (1) containing
both lagged endogenous and lagged exogenous variables, with the latter satisfying the
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standard supposition N ' x/x. = Q >0. Allowing for stochastic regressors however would
be somewhat more difficult.

If A'=(Ay, , &), then, the SSE (3) could be explained by the implications of the
SSE (4). And then, letting 3’ =(y,, -+ yIN), Z' =7y, e v Zn), ' =(uy, e , un), the
SSE (5) is to be proposed.

The OLS estimate A of A is given by A=(Z'Z)Z'y. As] can show in the followings,
N¥A—A)is asymptotically normally distributed with zero mean and covariance matrix
given by cov{NHA—-a)=V'WV-' with W:limNﬁm{]—l\,—g}lofE(Z,Z;)}>0. This

suggests that cov {N+(A — A )} be estimated by the SSE (6).
In the above-mentioned SSE (6), 2 =diag{#3, -+ , 44} with 2, is to be the OLS
residuals from the SSE (5).

By the way, in the followings, the above-shown N *(A—2)is to be examined. That is
to say, in the following, I can show the explanatory remarks on the asymptotic normality
of N¥(A— ). Since A =(Z'Z)"'Z’y, the following form (I)is to be proposed :

(D N¥A—-2a)=(N"'Z'Z)'"N+7'u.
Defining ¢ as a p * 1 vector of constants and
Fi =(u,y, - , Ue-p), E(N %' Z"u|F,_,)=0 and E(IN*CZ u)l=N"c'E(Z uu

N
Z)c= C,{J]\TEI G?E(ZtZQ)}c_* ¢'Wc>0. In order to establish the asymptotic normality

of N*Z"yu, and hence N*(A —A). I can use the following theorem. This theorem had
been proposed by Professor B.M. Brown in 19717,
THE BROWN'’S THEOREM :

“Let 2 be a martingale difference sequence with S‘%:éE (2%). Then

(@ if Si*% E(QH (24> eSw})—0, >0,
and
N p
B if S¥* R E(QHF. )1,
then,
N D .
¥ 32— N(0, 1),

where F;_, is the o-sigma field generated by Q,_y, - , &1
Now ¢’Z"u has ¢ th term ¢’ Z,u, which is a martingale difference. With Q,=c¢’'Z,u,, ¢’

Z’uzté.Qt and to determine the distribution of N“¥¢"Z"u, here, 1 can consider
(NT'S)FN*+c' Z u.

From the proof of THEOREM 1 in PART III (EXAMINATIONS AND
VERIFICATIONS), N‘lﬁl {ZtZ,t_E(ZtZ;)}——aiO and hence I can set it in probability.
Then consequently, the above-mentioned condition (B) is satisfied. Crowder showed, in his

N
paper”, that the condition () is implied by Sy O L E{1Q2*2}—0 for some § >0.
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Choosing 8 =2, this becomes
N
@) SF;:IE(.Q;‘)——» 0.

In turn Crowder demonstrated, in his paper, that the condition (a) is implied by the
proposition (AE (2¢) bounded uniformly in # and the proposition B)N "' Si— .

So, the second of these, ie., the proposition (B), is readily shown. Indeed, N “1Sh=
N(N'S%)>—— o since N 'Si— ¢’ Wc>0. '

The condition (@ in the above-mentioned Brown’s theorem holds if

(N SR N B E(QHF ) SH—0.

As seen above N~ 'Sz=FE(N*c’Z u)*— ¢’ Wc >0, and so here, I can concentrate on
showing that the following form (D could be proposed :

a N-lﬁlE(Qlet_l)—s%ri»o.

It is straightforward to see that the left hand side of the above-mentioned form (D could
be modified as the following form i.e.,

N _
N“c’{Z}lof{ZtZZ—E{ZtZQ)}}C and this converges in probability to zero if

N P
“Z Ot {ZtZt E(ZtZ;)}SO'ZN_IEI{ZtZ;“E{ZtZ;)}—"O

In this case, since

E(te-rtht-stUt—oUt-w)= Ot-r0t-v, ¥ =S F V=W,
E(Ui-rthe-sUt-vUtw)= Ot-r0t-w, ¥ = UF S=W,
EQte—rthe-sUe-oUt-w)= Of-r0i-s, ¥ =WF S =1,
E(Ue-rthecsUt-vUt—0)=0t-r, ¥ =S= U=V,
E(temrthe—sthe—vus—w)=0, otherwise, from the Supposition (),

E(#e-rthe-sthe—vUs—w) is bounded and the result follows.

So, all that remains to show is that the above-mentioned proposition (A—-i.e., that
E(£%)is bounded uniformly in /——is presented. Now, E(QH=E(c'Z:u:)'=E(c’
Z.)*E(u?!) and from the Supposition (d) for the SSE (1), E(«?) is bounded. And now E (¢
Z ) =E(Dtorcve-; ) =200 50k CmE (Ve iVe-#Ye-1Ye-m) and what I need to show
is that E(y:-Ve-xYe-1¥e-m) is bounded. ’

Now, in this case, from the SSE (7), it is convenient to write y.—;= D e-iQw-;jUt—w and SO
E(J’t-:‘j’t—kyt—zyt—m):Z°r°=j2?=kZ?:lZ%:mar—jas—ka’v—za/w_mE(ut—ruz—suc—uuz—w).

Smce the conditions of the BROWN’S THEOREM are satisfied N~ tc'Z u—D—*N 0, ¢

We) and, using the Cramer-Wold’s technique®, it follows that N +7’ u—*N (0, W).
Furthermore, from the proof of THEOREM I in PART III (EXAMINATIONS AND

VERIFICATIONS), N™'Z'Z— V—a:O and so, from the above-mentioned form (I), N HA
D .
—A)Y»— N, V'WV™!)as required.
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Examinations AND Verifications

First of all, I can prove the following theorem :

THEOREM I : “For the SSE (3) for which Suppositions (2)-(d) are assumed to hold, the OLS
estimate A=(2'Z)"'Z'yisa strongly consistent estimator of the p * 1 vector of coefficient
of the SSE (3).”

THE PROOF OF THEOREM 1 :

For the SSE (3), the martingale difference property of the u., t=1,2,------, and the
boundedness of the variances ¢? in Supposition (¢) are required in order that I can use the
LEMMA in PART 1I (METHOD). Supposition (a) guarantees that the SSE (3)can be
written in the SSE (7).

In the SSE (7), the a; decay exponentially as ; increases!®. My reason for expressing y;
in the SSE(7) becomes obvious in the proving procedures concerned with the above-
mentioned THEOREM and the THEOREM II that I can show in the followings.
Furthermore from the form of the independent processes I encounter, Supposition (d) is also
necessary.

By the way, it is not hard to see that how the SSE (8) is to be understood.

Now, (%)Z’Z:—}vﬁflaz, the », s th element of which is iNéyhryt_s and it has to

1 N a.s. . 1 N
be shown that _“‘Zyt—ryt—s“* limy-e—357 2] E(yt—ryt—s )= Urs.
Nt=l N!=1
Considering the second term on the right hand side of the SSE (8), the » ¢4 element (7 =
N N N
1, oeeeee ,p)of the p * 1vector —JIVEIZtut is ‘jlvt;ytfrug:Z?:o aj_}vtzi_;‘lut—r—jut using the

SSE (7).  Under Suppositions (c) and (@), it follows from the LEMMA in PART II
(METHOD) that, for r=1, -+ , b, that the SSE (10) could be proposed.

N
From the Supposition (@, using the SSE(7),—]%t:21yt-ryt_s:2;’;02::o

N
aja/k%gll Ut-r-;Ut-s-», and for » >s (if »<s simply interchange the roles for and s in the

. 1 N . o e 1 N o 1 N
“ensuing formulae), so thlytvryt—s—‘jvéoj“kgoaja’k NE ut-r—Jut—s‘k—l_zoa'Jarkr—s Nzlu
k¥r+j—8

f i
For », s=1, -+ y D7, B=0, e v, EQuer_jttios-2)=0, (kEr+j—s5s),

E( ut—r—j%z—s—k):O'tZ—r—j, (k= y+j— S).
However, E(lu:u;'"*)<E(lufu***)+1, and so Supposition (d) implies E(luiu;'*?)<
D<o, where D, is a positive constant and 2, 7=1,2, «+--e-
And so, for a0, {{#rtte-a—E(urtue-0)], t=1, 2, -+ } is a martingale difference, and so

a.s

from the LEMMA in PART II (METHOD) it follows that LgIUt-r—jut—s—k‘;’ 0,if k=~

1
“ N

M=

oi-

T—Je

+7—s, and LNZ ut-r_jut_s_k-i:_Qr(]'), ifk=7r+;—s, where Q,(;)=limx_

t=

—

1

I
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N as. o v N A
Thus %Vz.lyt_ryt_s—-*Jg}oajajw_sQrs(]'):liqumLNg (J/t—ﬂ)t—s)zvrs, and so the SSE
(9), in this case, can be proposed.

Hence, from the SSE (8), the SSE (9) and the SSE (10), I can have A— Aiio, as required.

So, using the results of the above-mentioned THEOREM 1, it is now possible to prove
the following THEOREM II.
THEOREM II : “Under the Suppositions (2)-(d), the estimated covariance matrix of the
limiting distribution of N*(A — A)is strongly consistent.”
THE PROOF OF THEOREM II:

From the SSE (6), cov (N*(A —A))= (ZNZ) (Z,EZX Z],VZ>_1 and from the proof of

THEOREM I, N~'Z'Z— V—0. So, all that needs to be shown here that V(N "'Z’

(2-2)Z)v——0.
Forr, s=1, -« , b, the 7, s th element of the first term on the right hand side of the

N b -
SSE(lis — %2 D Ve Ve wVi-ste (D g— Dy).
P |

Now consider the following :
N ~ ~
4Z (-7 NZ Zw—ud)Z.= ngz(uH- u)u:— u:)Z4, then it is not hard to

see that (2 + u:)=2u:— Z:(A— 1), (we—us)=—Z'(A — 1), so that in this case, the SSE
(Ican be proposed.

A~ as.
THEOREM I demonstrates that & ,—— A x(k=1, -+ , D).
N
Now, consider %Elyt—ryt—kyt—sut. I can express y:-i, [=F, 7, s, as a linear process of
the SSE (7) and use an argument similar to that used to investigate the almost sure

. N
convergence of N™'Z'Z. By doing this it is seen that %Elyt_ryz_kyt_sutz

oo o oo 1
aZ:} Z_}Z_}aaabacN*Zuz r—allt-r-oUt—s~-cUt.

And by defining W.(a. b, c, k, $)= the—r-athe—r—sUs-s-cU:, Where a, b, c=0, === , 0 R,
r,s=1, e D, the{w:a, b, c, r k, s)t=12 }are a sequence of martmgale
differences.

Thus from Supposition (d) and the LEMMA in PART II (METHOD), it is clear that

a.s.

N a.s.
71??;1“"("’ b,c, v,k sr—E{Wa,bc,r, k s)}=0. Hence NZyt Vie-xYVe-stee—0.

And therefore, in this case, the SSE(%could be proposed.
A similar argument to that for the first term applies to the second term on the right
hand side of the SSE(1), so that the SSE(3can be defined. '
Therefore, from the SSE (9) and the SSE(14), it follows N-YZ'Z)y Z'2ZNZ'Z) " is a
strong consistent estimator of the covariance matrix of the limiting distribution of N HA
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—4A). And from the SSE(1), the SSE(%and the SSE(3), the SSE(4can be proposed.

Results

—— Simulation Experiments by operating (Cu(IBM) AMDAHL S.
470-V/8) computor machine and their Results ——

Random numbers for u; were generated with a thoroughly tested algorithm due to
Brent'”; the initial value vo was set to zero and 500 observations on y, were constructed
with only the final 110 used, in order to eliminate any influence of the initial condition. 1,
000 replications were made. The following table records the actual variance of the OLS
estimator (0) and the ratio of the variance estimated by the SSE (6) to this actual variance
(¥, the classification being by the three parameters &, N, and £ (coefficient value, sample
size, and relative variances). And all values for O in the table are the actual variances
multiplied by 102

No evidence was presented by White et al. of the closeness of their estimators to the
true convariance matrix for the sample sizes of interest for econometric research based on
time series. This is probably explained by their emphases on cross-section works where the
number of observations is likely to be very large. However, as it seems likely that their
adjustments to the OLS variance will also be utilized in the time series context, a brief
examination of the adequacy of the approximation is warranted. To this end the SSE(5
was adopted. In this SSE(5), for N\ < N, g?=1, =1, -+ y Ny 0i=8Q, t=N;+1, - , N ;
that is the variance is assumed to shift within the sample period. In the basic experiment

Nt:%N and three values of A(0.4,0.6,0.8), three values of N (50, 70, 110) and three

values of £(2, 10, 100) are chosen. These would seem to provide a reasonable description
of the types of parameter values that might characterize and actual investigation.

TABLE

g 2=2 2=10 2= 100
P A0 Tam 06 (208 | A—04 | A 06 | A0 A=04 | A=06 | A=08
o 195 | 200 | o070 | 303 | 28 | 152 | 38 | 300 | 200
N o T 0m | owo 088 | 090 | 070 | 08 | 081 | 065
o] 135 | 095 | 062 | 206 | 160 | 079 | 252 | 201 | 092
A P v e 075 | 090 | 090 | 074 | 08 | 082 | 105
0| 08 | 049 | 036 | 130 | 099 | 040 | 173 | 095 | 0860
N T os T om0 | os 0.78 | 082 | 072 | 085 | 082 | 101

Conclusion

These results that were shown in PART IV (RESULTS —i.e SIMULATION
EXPERIMENTS BY OPERATING CU (IBM) AMDAHL S.470-V/8 COMPUTOR
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MACHINE AND THEIR RESULTS) are very interesting. They reveal that, for moderate
amounts of heteroscedasticity and an autoregressive parameter which is not too large,
White et al. adjusted variance is a good approximation to the actual one. This conclusion
holds even in small samples. However, as the degree of heteroscedasticity becomes very
large and as 4 tends to unity, there can be very large discrepancies between estimated and
actual variances. A relative variance of 100 is probably somewhat unrealistic in a step
function and the values for 2 =10 are perhaps a better guide to actual applied data. The
variation observed in estimator performance as A increases may not be surprising, as a
similar result'? for OLS occurs when disturbances are homoscedastic'®.

Finally, it is worth mentioning that changing N, from AZMto %resulted in only minor

changes to the results.
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(An Additional Remarks) :
This paper is an extensively and revised one of the study which I had reported at The
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International Meeting of The INTERNATIONAL SOCIETY OF OPERATIONS
RESEARCHES SCIENCES that had been held at Washington D.C., US, in August 6-12,
1984. And I had done the computor-simulation experiments that had been explained in this
paper by operating CU (IBM) AMDAHL S. 470-V/8 computor machine in Columbia
University, New York, US. in August 6-9, 1984.
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