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Introduction

First of all, consider a decision problem of the form

(1) n;gz<77(a)=E¢(X+aY),

where X is a random variable representing a decision maker’s current prospect, Y is a
random variable representing a possible venture and ¢ is his utility function for future
wealth.

The current prospect reflects the decision maker’s possible values of future wealth if he
proceeds with his present plans, commitments, business undertakings, investments, etc..
The venture Y is a prospective security purchase or sale, business deal, insurance policy,
or other project that, if undertaken, may influence future wealth. If @ is the amount of he
venture undertaken, X +aY becomes the decision maker’s prospect. Direct applicability
of this simple model is limited by several of the assumptions. It is a traditional two-period
model with just one prospective venture. Leland® has shown that familiar conditions for
a maximum apply if @, Y are interpreted as vectors. Fama? has shown that, for some
problems, the two-period model can be embedded in a multi-period model. For some
business ventures, the linearity and additivity assumptions may not be appropriate ; but it
may sometimes be possible to approximate a single nonadditive or nonlinear venture by
several appropriately restricted linear and additive ventures. A represents possible
amounts of the venture.

A is determined by the circumstances of the particular venture under consideration. A
purchase of commom stock could be any nonnegative integral number of shares up to the
limit of the decision maker’s resources. Stock options or commodity futures could be
bought or sold so & could be possitive or negative. Joining a partnership might require a
specified investment so A would be a single point. It is convenient to initially assume that
@ might be any real number and subsequently consider restrictions that might be imposed
in particular applications.? Unless otherwise noted, 4 is assumed equal to R, the real line.

If ¢ is differentiable and concave (risk aversion) and if £ ¢(X +a¥ LZEY o(X+aY)
are finite then 7 is differentiable? and

(2) 7(a)=EY9 (X +aY).
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¢ strictly concave implies 7 strictly concave in which case the optimal (maximizing)
value of @, say @, is unique if it exsts. & exists if and only if P(Y >0)>0 and P(Y<0)>
0 (neither Y nor — Y is a sure thing) .

One is interested in relating @ to properties of the initial prospect and the venture that
may sometimes be determinable in practical situations. With strict concavity, hereinafter
assumed, @ uniquely solves 7'(@)=0. 7(a) has the form of an inverted U so one way to
investigate the general location of @ is to try to determine the sign of 7'(a) for intersting
values of @. If 7°(@)>0 for a chosen @ then @ > @ since 7(@) must level off to the right of
@. Thus

AllY

0.

AV

3) aza<e>n(a)

Thus determining the sign of 7'(0), marginal expected utility at the origin, indicates the
sign of @. If the decision maker can either buy or sell short, a negative @ would indicate
the latter. In cases where only positive amounts of the venture are feasible, negative @
indicates that he would retain his current prospect. Recalling (2),

4 7 (0)=EYe (X)=(EY )NEg (X))+ Cov(Y, ¢'(X)).

To determine the common sign of 7°(0) and @, note that a decision maker’s normal
preference for higher income implies that ¢’ and therefore E¢’ is positive. Thus, if £Y and
Cov(Y, ¢'(X)) agree in sign, 7'(0) and @ will also have this sign. IFEY and Cou(Y, ¢’
(X)) differ in sign one has to know further particulars of the utility function and the joint
distribution of X, Y to determine the sign of &.

If X and Y are stochastically independent, then Cov(Y, ¢'(X))=0and & agrees in sign
with EY.

The main purpose of this paper is to indicate several conditions sufficient to determine
the sign of Cov( Y, ¢'(X)) when the initial prospect and venture are not independent. The
conditions and some logical relations among them are given in the following section. And
some hypothetical applications are cited in the following section of “Results and
Verifications”.

Methods

— Sufficient Conditions for Positive Covariance ——

Under risk aversion, ¢ is decreasing so Condition (2) below makes Cov(Y, ¢'(X))
positive. Each of the other conditions is shown to imply Condition (a) and relations among
the other conditions are explored. As is customary if F, G are probability distribution
functions, F < G is defined to mean F(X)<G(X)VxeR and F+ G.

THEOREM 1 “Let X, Y be nondegenerate random variables with finite means and
variances and with distribution functions Fx, F>. The following implications hold among
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the conditions hold among the conditions listed below : (b)=> (a), (c)=> (b), (d)=> (b), (¢) = (c),
(f)=(b), (8= (a), ()= (8), ()= (e). Statements about conditional expectations and
distributions in (b) through (e) are to be understood to hold a.s. Fy.

Condition (2) © Y is positively correlated with any strictly decreasing function of X with
finite second moment.

Condition () : 3% 3[x<%= E(Y|X=x)>E,], [x>%= E(Y|X=x)<EY]
Condition (¢) . E(Y | X =x)is a strictly decreasing function of x.

Condition (d) : X3 [FY [x-x X=XZFy & xZ 7).

Condition (¢) : ¥V %, % € support Fx with £ < ¥, FyxX = I<FyxX=%<Fyx=%.
Condition (f) : 3% 3[YZEY & XZEY < X= 7]

Condition (8) : Y=F(W, V)and X=g(W, Z) where W is a nontrivial random variable ;
V and Z are ramdom mappings; W, V, Z are independent ; (-, +)is strictly increasing
in its first argument ; g(-, - ) is strictly decreasing in its first argument.

Condition (h) 1 Y'=/(W, V)and X =¢(W ) where W, V, f are as in the Condition (2) and
g is strictly decreasing”

PROOF :

(b)= (a)

Let ¥ ! R— R be strictly decreasing and Y*=Y —EY. Then Cov(Y, y(x))=
EY*7(X)= [ B |X=0y()dFx+ [ _E(Y*| X =0)7(x)dFx>7(%) [E(Y*| X =
x)dFx=y(X)EY*=0

(c)== (b)
Choose a version of E( Y | X =x) that is strictly decreasing. Let £ =sup{x . E(Y|X=x)
>EY}.

(d)== (b)

The following Lemma is proved in Tesfatsion’s paper® and modifies an earlier Lemma
by Hanoch and Levy.
LEMMA': If F, G are distribution functions and O © R— R is continuous, nondercreasing

—125—



and f@dF<oo, fHdG<oo " then fadF~f9dG:f<G—F)d9. Suppose x > #. Then Fy x-x

SFy as.and E(Y | X=2)~EY'= [yaFyix-c— [ydFr= [(Fy(y)= Frux(3))dy <0.

(e)== (¢)
Similarly, use of the above Lemma. That (&)= (c) is essentially the same as a
proposition of D. T. Scheffman”.

(f)== (b)

E(YIX:x):S fyFYU(:x and for x<{(resp>)%, y>(<)EY

(8)== (a)

Let 7 . R— Rbe any strictly decreasing function. Define (W, Z)=7(g(W, Z)).
Clearly # is strictly increasing in its first arguments. Define Flw)=EF(w, V)and h(w)=
Eh(w, Z). f and £ are strictly increasing. Without loss of generality let EY =0. Define

wo=1inflw| F(w)>0}. Then Cov(Y, y(X))=E(Y, Y(X))ZE(f(w VW, Z))=

[F () RGdFwtw)= [, 7l iGw)dFuw)+ [, T hw)dFy(w)>

w) [ 7 (w)dFw (w)= wo)EY =0.

This result generalizes another of Scheffman’s Lemma?.

(h) == (8)
Obvious since (h) may be regarded as the special case of (8) in which is constant.

(h) == (¢)

Since g is strictly decreasing, 7' exists and d decreases strictly. Write W =g '(X) and
Y =f(g""(X), V)=h(X, V)where h is strictly decreasing in its first argument. For any

s<z E(YIX=5)2 E%, V)>ER(%, V)= E(Y|X=%)since (X, v)>h(%, v) for

all v. For any v, Fyix= x(y)— P{v: n(x, v)<yhH<Pv({v: h(f, v)< y})a'—s Fy x(v)since
(v (%, v)<y)C{v: k(%,v)<y}. The distributions cannot be equal since it was shown
that E(Y | X=%)>E(Y|X=1%)a.s.

Summarising, and taking account of transitivity of = , we can have COROLLARY like
the below-shown. That is to say, For the conditions of THEOREM I, (h) = (2), (c)= (b), (),
@ = (), (@), (e)=> (), (b), (), ()= (b), (a), (&)= (a), ()= (8), (e), (c), (b), (a).

Whether other implications might exist is a natural question answered by
THEOREM 11 “Consider random variables X, Y and Condition (2) through (h) as in
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THEOREM 1. The implications listed in the COROLLARY like the above-mentioned are
the only valid implications among these conditions.”

PROOF :
(h) = (f), (h) 5 (d)

@ : Denote the probability space on which the random variables are defined by (2, F, P).
Let 2={1,2, 3, 4} with respective probabilities 0.3, 0.2, 0.2, 0.3. Let W(l)= W(3)=0, W(2)
=WH4)=1, V3= V4)=0, V(1)=V(2)=1. Llet X=—Wand Y=W+2V. A little
arithmetic verifies that (h) holds but neither (f) nor (d).

(8) implies only (a)

® : Let W, V, Z of Condition (8) each take the value —1 with probability 0.5 and 1 with
probability 0.5 and be independent. Let Y=V +eW, X=Z—eW where 0<e<1. (8)is
satisfied. Using independence of W, V, Z, a simple calculation yields E(Y | X =—1—¢)=
& E(Y|X=—14+e)=—¢ E(Y|X=1—¢)=¢, E(Y|X =14¢)=—e¢, which violate (b). (2)
cannot imply (¢) since (¢) implies (b). Similary () cannot imply (d), (e), () or (h) since each
of these implies (b), (f) # (h), (8),

(e), (@), or (c).

©: Let 2=1{1, 2, 3, 4} with P{w}=0.25Vw ; X(w)=wVw: Y1) =1, Y@2)=Y4)=0,Y
(3)=1. Then EY =3 and & =1.5 makes (f) satisfied. However, (c), (d), (e), (8), (h) are violated.
To see that (8) and (h) are not satisfied note that any Z independent of ¥ would have to be
a constant as would any V independent of X. Thus to satisfy (g) or (h) there would have
a monotonically related to both X and Y. But this is impossible since X is monotonic on
£ and Y is not. .

(e) = (h), (®), (), or (d).

@ : Let 2={1, 2,3,4,5} with P(w)=02V o ; Y(w)=w, X1=XQB)=1,X2)=X4)=0, X
(5)=—1.(e) q satisfied. By an argument similar to that in (c), (8) is not satisfied. Since (h)
= (8), (&)= (8) it follows that (e)=4 (h). Since (h)= (8), (h) = (@) it follows that (= (; a
similar argument shows (h) = (d).

(d) = (n), (8), (d), (e), or (c).

© : Let 2=(1, 2,3, 4, 5} with probabilities 0.67, 0.3,0.3,0.67. Let X(0)=0, X(2)=X(3)=
1, X(4)=2and let Y(1)=Y(3)=1, Y(2)= Y (4)=0. (d) holds with # =1. (8), and therefore
(h), does not hold. Tentatively suppose () holds. Any V independent of X must be constant
so we may write Y=/f(W), W=s"(Y),and X=g(f"(Y), Z)=h(Y, Z) where k is
strictly decreasing in its first argument. Let Z (1)=p, Z(3)=y. Then Z independent of Y
requires that Z(2)=v, Z(4)=p. But then h(1, v)=h(0, v)=1 which contradicts the fact that
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h is strictly decreasing in its first argument.

@ Let 2=1{1,2, - 7} with P{w}=0.08333 for =1 -4, P{5}=0.17, P{6}=P{7}=0.25.
Let X()=X6)=X6)=0, X(2)=1, X(3)=X4)=2, X(7)=—1;and Y(1)=Y@)=4, Y(2)= ¥
(3)= Y (5)=0, Y(6)= Y(7)=5. Then (@) holds with ¥ =0 ; but (f), (¢), (¢) do not hold.

(¢) implies only (b) and (a).

@Let 2=1{1,2,3), P(w)=03Vw. Let X(1)=0, X(2)=X(3)=1. Let Y(1)==1, Y(2)=2, Y(3)=
— 9 Then (¢) holds but not (¢). Since (¢)= (c) and ()= (n), (&), (f), or (d); it follows that (c)
= (h), (8), (f), or (d).
(b) implies only (a).

Since (@)= (b) and (d)=¢ (b), (®), (£), (), or (¢), (b) does not imply any of the latter. Since
(¢)= (b) and (c) = (d), (b) = (d).

(a) implies none of the others.

Since (8) = (a) but (8) = (b) (a)=* (b). Since each of the others implies (b), (@) could not
imply any without implying (b).

Quite a few propositions closely related to those of THEOREM I may be obtained by
reversing or weakening appropriate inequalities and monotonicities in both assumptions
and conclusions. For example, (b')= (a’) and (c*)= (a*) where (b")3 ¥ 3 [x>x=

E(Y|X=x)>EY], [x<i= E(Y|X=x)<EY]. (a") Y is negatively correlated with any

strictly decreasing function of X that has finite second moment. (c*) E(Y [X=x)is a
nonincreasing function of x. (d*) Y is not negatively correlated with any nonincreasing
function of X with finite second moment.

Other possible modifications seem reasonably clear and too numerous to try to list.

Concluding Remarks

——The Case of Insurance——

Condition (2), called nogative S-Correlation by Scheffman, has been found useful by
Samuelson®? and Scheffman'® in establishing several theorems on diversification of
investments. Some illustrative applications of other conditions follow. The general
assumptions of the section of “Methods” (e.g., the strict concavity of the utility function ¢)
will be assumed to hold throughout.

A decision maker stands to lose an amount w > o if the event A occurs. In exchange for
a premium c, he is offered an insurance policy that will cover this contingent loss. Viewed
as a venture the policy can be written Y =wlsa—c¢ where 4 is the indicator function of the
event A. Suppose he can also elect partial coverage at a proportionally reduced premium,
i.e., he can elect to pay a premium ac, 0<a<1, and be reimbursed ew if the loss occurs.

Let Z represent his current prospect other than this possibility of lose. His expected
utility as a function of the chosen coverage is then.

(5) n(a):E¢(Z:wIA+a(wIA—c))=E¢(X+afY)
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with X =Z—wls, Y =wls— c. Assuming Z is independent of A, Condition (8) of the section
of “Methods” is satisfied. To observe the circumstances under which some coverage will
be taken, note

(6) 7(0)=EY Ep’ (X )+Cov(Y, ¢ (X)).

Since (THEOREM 1) (8)= (a), we know that the covariance is positive. Examining the
first term on the right,

(7) EY E¢'(X)=(wPsi—c)E¢ (X)

one observes that E¢” is always positive and (wPs— c) is the subjective actuarial value'® of
the policy. From (6), (7) and (3),

—Cov(Y, ¢'(x))
Eo'(X) :

8 ad=02(0)20 (wWPsi—c)=

Since the ratio on the right is known to be negative, it is clear that some coverage will

be chosen if the subjective actuarial value is nonnegative or even somewhat negative, so
long as

Cov(Y, go’(X)).

(9) c<wPy+ E¢'(X)

Calculation of this upper limit on the premium would, of course, require detailed
knowledge of decision maker’s utility and subjective probability.

One may also be interested in the circumstances under which full coverage will be
taken. By (3) this depends on (1). In this case,

W  7O=EYe(X+Y)=E(wl—c)o'(Z—c)=E(wli—c)Ep'(Z—¢),
the final equality following from the independent of Z and A. So,
(1 @dZ1 e wlhi—cZ0.
Thus full coverage will be desired if the policy is offered at exactly subjective actuarial

value and less (more) than full coverage if the policy offers less (more) than subjective
actuarial value.

The results readily extend to more general kinds of coverage. Let W be any pattern of
potential loss and c a premium covering such a loss. Then X=7-— W,Y=W-—c.
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Condition () is still satisfied (assuming Z, W independent) and

(12

aZ0o (EW —¢c)E— .

L aZle® EW—cZo,

where EW — ¢ is the subjective actuarial value and Cov(W, ¢’(X)) is known to be positive.

1)

8)
9)

10)
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Notes

The subjective actuarial value could be different for the decision maker and the insurance
company if they have different estimates of P4, or if an uninsured porperty loss by the
decision maker would involve secondarry losses—loss of customers, borrowing on
unfavorable terms, etc. . In the latter case, the actual claim would be less than w.
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