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Introduction

Generally speaking, if there are more than two possible states, or if different agents observe
different data, the general equilibrium process may continue for more than two stages. The
intermediate outcomes will be called informational temporary equilibria. If the number of states
is finite, the process will stop in a finite number of steps, and the final outcome will be called an
equilibrium.

‘ This paper analyses the relation between equilibrium and expectations-equilibrium. The data
observed by the 7 th agent will be assumed to be represented by a function f' of the market
data(p, y). The first result states that data structures which generally admit expectations-
equilibria have the characteristic property that for each i, either f* is constant or f'(p, y) £,
y) whenever(p, ¥')#®’, ¥"). Such data structures are called admissible. This result generalizes an
admissibility characterization obtained in Jordan’s paper (1976) for data structures in which all
agents have the same continuous data functions.A data structure is called eventually admissible
if it generates equilibria which are expectations-equiliﬁria for an admissible data structure. A
characterization of eventually admissible data structures is given by the Theorem which is
concerned with data structures. Any way, in this paper, we discuss the requirement that
temporary equilibrium trades are not be consummated'. An example is presented to demonstrate
that this requirement is essential even to the existence of temporary equilibria. And the
definitions of temporary equilibrium and equilibrium are extended to the general case. At any
rate, suppose that the class of stochastic environments is enlarged by admitting the possibility
of more than two events. If only finitely many events are admitted, the general definitions have
obvious generalizations. If Z is the set of future states, an information structure can be modelled
as an N-tuple of partitions of 2XZ. A sequence of temporary equilibria would successively
refine each agent’s partition, and an equilibrium would be reached in a finite number of stages.
However, if 2 is an infinite set, éxamples are easily constructed for which an equilibrium is not

reached in any finite number of stages. A temporary equilibrium associates a message with each



(w, O0), so it might seem natural to define an equilibrium as the function which associates with
each (w, O) the limit of an associated sequence of temporary equilibrium messages. However, the
existence of equilibrium would then depend of the existence of this limit, which not in general
be an informational issue. Although the messages associated with each state may not be
convergent, for each 1, the inf‘ormation sequence {N{}?=0 (of either partitions of Borel
Fields) increases to its least upper bound, T]i*, consider a function which associates with each (w,
0) a competitive equilibrium message for utility functions conditioned on the information Y]", for
each 1. If the resulting data do not increase any agent’s information, we will call this functiqn an

equilibrium.
Method

(@ Static Exchange Environments : There are N agents, indexed by the superscript i, and J
commodities, indexed by the subscript j, with 2N < coand 2</< o0, The ¢ th agent has a
consumption space X*, an endowment space &' and a space of net trades Y'=X'—Q' Let R4
denote the nonnegative orthant of R/. We will assume that for each i, Q' =R4 +{0} and X‘=int
R+, Let X'=TI)= 1 X*, Q={w e TI?=1Q" : TI'= 14" > 0 for each j} and let Y={y e [I}=,Y*: Ty
=0 }. For each i, let #' denote the set of continuous, strictly concave, and strictly increasing
utility function ' : X*—R, with the additional property that for each 1 € X*, the closure in R’ of
the set{x" € X' : 4'(x")=u'(x")} is contained in X'. Let U=I1}=,U".

The space of static exchange environments, E, is defined by E=Q-U. Defining Ef =" X U,
and making the obvious identifications, we have E=II{=1E’. A generic element of E is denoted
e, with the identifications ¢ = (w, w)and ¢ = (¢!, ...... , e"). The definition of U insures that
equilibrium allocations will be interior, which facilitates the use of calculus. It will be explained
that the results in this paper would be unaffected if we redefined X* to be R%4, and U® to be the
set of continuous, strictly concave, and strictly increasing functions of R%.

A two-event stochastic environment associates static environments ea and en with the
respective states. A stochastic environment has the following interpretation. In state a, an
endowment ws = (wd, ...... , wd) is realized, and trading ensues. An allocation Xa=(%d, ... , x2) is
determined that utilities u} (x.) are realized. The process for state b is exactly analogous. Some
agents, including those for whom wi #w}, will initially recognize which state has occured. These

agents will trade to maximize »'s and s in the respective states. Other agents may be unable to



discern the state initially, and in the absence of further information, will trade to maximize their
expected utility Mus + (1 —A)’s in each state, where M is the probability of state a. Thus a
stochastic environment is described by the two states and their probabilities, and the initial
distribution of information. This definition is stated formally below.

@ Stochastic Exchange Environments : An information structure is an N-tuple of numbers N=
M, ....m") where W' € {0,1} for each i. The ith agent is said to be informed if W' =1, and in
uninformed by S={s=M, A, ea, ¢v); ea, es €E, 0 <A< 1, and 1 is an information structure such
that for each i, N'=1 if w's #w's}. The number A is interpreted as the probability of state a.
The realization function 7. : S—E and s : S—E are defined coordinatewise ny :

. W'a, u'a) if N'=1; and
Tat(S):"’

W'a, Mia+(1 —Nu's) ; if W'= 0,

Fafs)= { W's, w's) if '=1; and

W's, My +(1 —Mus) ;if =0,
where s=(, A, eq, es).

(® Remarks : The function ¥, associates with each stochastic enviroqment a static environment
consisting of the endowments and expected utility functions realized in state a, given each
agent’s information. The static environment 7.(s) can be regarded as an “Initial Realization”, in
contrast to the “Final Realization"(ws, us). We now describe the process by which agents use
market data to supplement their initial information.

@ Let & denote the relative interior of the unit simple# in R+, and let M ={(p,y) € & zY : Zy/
=0 and for each 1, py =9 }. Define the correspondence 4 : E—=M by setting W) equal to the set
of competitive equilibrium prices and net trades for e. In the definition of the competitive
allocation mechanism presented in the paper of Mount and Reiter (1974), M is the competitive
message space, and W is the competitive message process. Hence elements of M will be called
messages, and denoted by either (p, y) or m. For each ¢, a data function is a function f* on M to
an arbitrary set. A data structure is an N-tuple F' =(f, ......, fN)>of data functions.

® For a stochastic environment s = M., N\, eq, eb) and a data structure f, a sequence of
temporary equilibria is a finite sequence of information structure, {N:}7=0, and message pairs,

{(mat. mon}l=0 with (i)Mo=n;and for each i and each t=1,



ni= | (L Ni=0=1 or f*(ma)#/*(ms:) ; and
¢

0 otherwise;

(i1 ) for each t=1, ma € WK 1,(Ni—1, A, eq, e5) ; and mu € Wk 76Mi—1, N, eq, ep) ; and (i11) M7
=Nr-1. The pair(ma, meu) is said to be an equilibrium for(s, f). The above definitions embody
the requirement that the trades ya: and yw, t < 7T, are not consummated, and have only an
informational influence on the equilibrium trades yar and ys7. Since there are N agents and only
two states, there will always exist a sequence of temporary equilibria with T7<N— 1. In stage ¢,
the 1 th agent uses the observed data f'(mas) or f'(me) to supplement his previous information
Mi—1'. An implication of ( i) is that for each ¢, N:<W:+1, so no information of (i) is ever lost.
Condition (11) states that the messages ma: and me: are competitive equilibria for the respective
realized static environments 7(Ni—1, M, ea, €s) and 7s(N:—1, M, ea, es). Condition (iii) is the
stationarity condition, which states that the pair (ma:, mu) does not generate additional

information for any agent. In particular define the information structure 7] by

. 1 if W=1 or fimar)#f'(ms7) ; and

0 otherwise.

Then (iii) implies that N<Wr—1 =n7. If § =%7—1, then equiblirium (mat, msr) would be an
expectations equilibrium, as defined below.

® Expectations-Equilibrium : An expectations-equilibrium for a stochastic environment is s =
M, A, eq, eb) and a data structure F is a pair (ma, ms) € MxM such that m, € u*ra(ﬁ, A, ea, eb)and

ms € u*rb(ﬁ, A, eq, eb), where M is defined by

= Lif W=1 or fima)F#f'(ms);
O otherwise.
(@ Notation : Given a metric space Z, B(Z) denotes the Borel Field of subsets of A, and M(Z)
denotes the space of Borel probability measures on Z, endowed with the topology of weak
convergence. Unless otherwise noted, all functions will be assumed to be Borel measurable
functions taking values in a Borel subset of a complete separable metric space. Given functions
h1 and h2, h1 will be said to be h2-measurable if there exists a function k3 such that A1 =h3 %
h2. Given an indexed collection of functions hz : Z—Z, ® € A, the function Ve, h« is the function

(ho)ae, : Z—MlacaZ 1f ¢ € M(Z), and P(-)is a property of elements of Z, the statement ¢ {z:



P(z)} =1 will be written P(2)]  ]. If there is a function h3 such that h1=h3-h2[?], h1 will be _
said to be 22 measurable[ #].

Definitions : Let Z be a compact metric space containing more than one element. For each i,
let V* denote the set of utility functions v' : X* XZ—R such that (i) ¢ is continuous ; and (ii)
for each 0 € Z, v'(+, ) € U*. Let V=TIV’ An information structure is an N-tuple N=(0", ......
M) of functions on RXZ with the property that for each i, the projection (w, 0) = w' is
7-measurable. A stochastic environment s consists of an initial information strucfure M a
probability measure ¥ € M(Q XZ), and an N-tuple of utility functions v € V. The set of
stochastic environments is again denoted S. A data is an N-tuple F=(f L, ") of functions on
M._ A sequence of temporary equilibria for a stochastic environment is s =M, ¥, v) and a ’data
structure F is a sequence of information structure M, t= 0, and functions g¢: RXZ—M, T= 1,
‘such that (1)Mo="n; and for each i and each t = 1, 0/ =ni—1V(f', g); and(ii )for each t =1, g
(w, o) € Ww', E{v’ Mi-1(w, 0)}}¥+1)| ¥ |, where E{v' [n'w, 0)} denotes the utility function x*—
E{v'(,-)IW'(w, 0)}. For each i let W', = V=0 /. Suppose there is a function g, : R XEZ—N such
that (ii1) g, (w, O) € W([w', E{v‘|’r]"*(w. 0)}=1)[? ], and (iv) for each i, f'. g, is n*i-measurable[ 1l
Then g, is an equilibrium for (s, F). An expectations-equilibrium for (s, F) is a function g : QXX

—M such that gw, 0) € W([w', E{v’'|n'@w, 0)}}*=1[ ?], where for each i, W=V(, g).
Examinations and Verifications

@ The compactness of Z, together with the continuity of the utility functions v®, insures the
existence of expected utility. So, the above-mentioned -condition (iv) is the informational
stationarity condition. ‘

@ A two events stochastic environment (o, A, e, ev) can of course be identified with a
stochastic environment M, ¥, v) by choosing 0; % 0y € Z, and defining ( 1 ) ? ({(wa, 02)})=A and
? ({@ws, G0)})=1 —A; (ii) let r=d(0s, Ob), where d is the metric on =, and for each 4, define v' :
X*XZ—R by v'(x, 0)=|a(0, Ob)/r]-u'a(x) +[d(0, Ou)/7]  w's(x’) for each (x', 0) € X* XZ ; and (iii) for
each i, let N' be trivial if No'= 0, and let N be the identity on XX if No'= 1. Also, it is easily
checked that (ma, ms) is an equilibrium for (Mo, A, es, es), if and only if N,  , v) has an
equilibrium g, with g_(we, a)=me and g, (ws, b)=ms. The exactly analogous statement holds for
expectations-equilibria.

‘® A data structure F is admissible if for each stochastic environment s, there exists an



expectations-equilibrium for (s, F). If there exists a data structure F’ such that for each s €S,
every equilibrium for (s, F’) is an expectations-equilibrium for (s, F), then F is eventually
admissible. So the advantage of the above definition in the many-event case is that it does not
require the existence of equilibrium.

@ Let h1 and h2 be functions on QXZ and let ¥ € M(2XZ). Suppose that for each (w, 0), (',
0') € QXZ, ho(w, O)=h2w’, 0') implies h1(w, O)=h1(w’, 0'). Then h1 is h2 measurable[?].

Proof : Let K be a compact subset of £XZ such that k1 and h2 are continuous on K. Then there
is a continuous function ¢ on h1(K) such that hz2|K =c-h1|K. By Lusin’s Theorem (in Halmos’
paper (1950), p. 244), there is a Borel set ¢ € QX2 such that #(C)=1 and C is a countable
union of compact sets on which k1 and h2 are continuous. Therefore, h1(C) is a Borel set, and
there is a Borel measurable function k3 on h1(C) such that h3|C=h3-h2|C. This completes the
proof.

® THEOREM:(A): A data structure F is admissible if and only if for each 1, either (1) f* is
trivial ; or (ii) f* (b, ¥)FF(’, ) whenever (b, y)F @', »"). (B): A data structure F is eventually
admissible if and only if for each 1, ei'gher (1) f'is trivial for (i1) f'(p, y)#f'(p’, ¥') whenever p=
/¢’ and the weak axiom is satisfied for agent i. (C): If F is eventually admissible, let F * be a data
structure such that for each i, (i) if f* is trivial then f* is trivial ; and (ii) if f* is nc}t trivial
then f** is the projection (p, y) = (p, »'). Then for each stochastic environment s every
equilibrium for (s, F)is an expectations-equilibrium for (s, F *).

Proof : For (A), it only remains to prove sufficiency. Let F satisfy (A, (11)) or (A, (1)) for each i,
and let s=(M, ¢, v)€S. Let N be the information structure such that for each i, 0" =1 if f* is

trivial, and M is the identity on QXZ if f* is not trivial. Let g : XZ — M be a Borel

measurable selection from the correspondence (w, 0)—W(w', E{v'In"@w, 0)}]}=1). For each i, let W'
=WV(, g). If f* is trivial, W'=m"=m0, so to show that g is an expectations-equilibrium for (s, F),
is suffices to show that for a.e. (w, 0), if (b, y)=g(w, 0O) then y* maximizes E{v'(w’ +y"')h:l" (w, 0)}
subject to py'< o for each ¢ such that f* is not trivial. For any i such that f* is not trivial, let ITf
:M—Ax: Y be the projection and let g =IT'- g. By the above-stated Theorem, g' is W'
measurable] ? |. For a.e. (w, 0); y* maximizes E{v'w’+5", )", 0)} subject to py"<0, where (p,
y') = g'(w, 0). Since g is 7' measurable [#]. it follows that ' maximizes E{v‘@’ +yi,')|ﬁi(w, )}
subject to py*<O0 [ ¥ ], which proves sufficiency in (A). For (B) also, only sufficiency remains to

be proved. We will establish (B) and (C) by showing that if F satisfies (B (1)) or (B (ii)) for
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each 1, énd s=(M, ¢, v) €S, then every equilibrium for (s, F) is an expectations-equilibrium for
(s, F*), where F'* satisfies (C (1)) and (C (ii)) for each i. Let g, be an equilibrium for (s, F),
and let ', = 1" g, =f*i-g* for each i. We first show that for each i such that f* is not trivial,
g, is ', measurable [#], where W, is defined in the above-stated definitions. Let (w, 0), ', 0')
€ QXZ with W, @, 0)=", W', 0'), and let (b, y')= g' (w, 0) and (', y")= g w, 0), for any i such
that f* is not trivial. Then E{v' |, w, 0)} =E{/' |, @', 0) and w'=w" so (p, y) and @', ¥")
satisfy the weak axiom for ¢. Also, since the common expected utility function is strictly
concave, y' s 5" only if p=£p’. However, (B) implies that p =p’, so & W, 0)= g' W', ).
Therefore, the Theorem in ® implies that g’ is 7, measurable [?]. Repeating the argument in

the first paragraph above, with W', in place of ", completes the proof. -
*
Concluding Remarks

@O We now consider the existence of equilibrium. First, it is necessary to assume that data
functions are continuous to ensure that the equally fim)=f'(m’) is a closed condition. Otherwise,
even vif g, converged pointwise everjwhere to g, . 1 g, might distinguish events not
distinguished by fi'g, for any t. If the support of ¥ is countable, the sequence {g,} will have a
pointwise a.e. convergent subsequence. The first paragraph of the proof in the below mentioned,
combined with the continuity of data functions, shows that the pointwise a.e., limit of any
subsequence of {g,} is an equilibrium. For the general case, the following result establishes the
existence of equilibria for continuous eventually admissible data structures.

(@ Proposition : Let F be an eventually admissible data structure such that f* is continuous for
each 1. Then for each stochastic environment s, (s, F) has an equilibr’ium.

Proof : Let s=(N, ¥ v) be a stochastic environment, and let {":—1, g:}77, be a sequence of
temporary equilibria for (s, F). For any 7 and any x' €x’, let {x:i}(,’il be a sequence in Xi
converging to x*. For each i, define the function v/’ : XZ—R by v/ =E{v'(x, )0/}, and let v;*
=E{v'(', )W, }. We will show that the sequence {v} contains a subsequence converging to v,
pointwise a.e?]. It suffices to show that {vi'} converges in measure to v"; (in Halmos' paper
(1950) Theorem D, p. 93). Let M,* and N/ denote the subfields of B (2 XZ) generated by W/, for
each ¢, and M, respectively. For any Y> 0, let A €1’ such that (%)% (4)> 0, and for some
number ¢,| V4 w, 0)—c|<Y for all (w, O) € A. Let 8= ¥ (4), and let k= 2 sup{|v'x’, 0)], t =1,
o€ X}, Since W, = V: 1/, there is some ¢, and some B €M, with ?(4AB)<a, where a=(y*/2k?),

— 101 —



and A denotes symmetric difference (in Halmos' paper (1950), Theorem D, p. 56). Since M/
€N+ for each t, B € N for all t = % Let t' > ° such that for each t > t', [v'(x/, 0)—v'(x', 0)|
< b for each 0 € 2, where b=Fka/(0+a). For any t > t', let C={(w, 0) € B:vi(e, 0)—c>27Y. By
the definitions of v/ and v ,fc[v,"( =t (-)id Y <b?()<b®+a). Since L[wi(')—vi ()]-d ¥
=IcﬂA[ la ¢ +IC/A[ JdPZa®P(cNA)y—ka, PICNAY(1/Y)[b(O+a)+ka=Y?/E.

By partitioning the interval [—k, k| into /Y subintervals of length -2Y, and applying@} )~ !,
one obtains a collection of at most k/Y subsets of £2XZ which satisfy (%) and whose union has
probability one. Therefore, we have shown that for each t > ¢, ¢ ({w, 0) : viw, 0)—v', (w, 0)> .
3v})<¥. Similarly, ¢ ({(w, 0):v'(w, 0)—v', w, 0)< —3v})<¥, which proves that {v/'} converges
in measure to v% . Thus any subsequence of {v":} contain a pointwise a. e. convergent
subsequence.

For each ¢, let p,: RXZ—A be the function obtained by composing g, and the projection of M
into A. Let p, : QXZ—+A be a V.2, p, meausrable selection from the correspondence (w, 0)—
Nyo+1cH{pp, O), po+1(w, O), ...}, where cl denotes closure. Define the function g,  RXZE—-M
by g,(w, 0) = (p, y), where p =p, (w, O), for each 1< i <N, y' is the excess demand of at p
determined by w' and E{v‘|W, @, 0)}, and y¥= —Zi<Ny,, for each (w, 0) € QXZ. The result of the
first paragraph above implies that g, (w, 0) € W(jw', E{vi|7]i* w, O} P=i[ P - We will use to show
thatf-g* 1s T]‘; measurable for each i. For any i such that f* is non-trivial, let (w, 0), W', o)
€ QXX such that W, w, 0)="2,w’, 0'). Let (p, y)=g,w, 0) and (', ¥)=g,w’, o). By V2 p(w, 0)=
VI pw', 0), so the definition of g, implies that p=p". Let {t¢} be an increasing sequence of
integers such that lig_yk(w, 0) =p. Then since VI, pw, 0)= V> p’, ), the result of the first
paragraph implies that zirglh(w, C)=(p, y) and ‘lrirgtk(w. o=@, y).

Since f* is continuous and f*- gi(w, 0)=f"' gyw’, o'Yfor all t, f(p, y) =f'(®’, '), and result follows

from the above-mentioned Theorem.
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