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Introduction

This paper considers the generic econometric modéling situation in which a dependent vari-
able y is modeled as a function of a vector of explanatory variables X and stochastic terms,
where the conditional expectatiqn of y given X can be written in the single index form E(y|X) =
F (a+X'B). This situation exists for inany standard models of discrete choice, censoring, and
selection, but is clearly not limited to such models. The question of interest is what can be
learned about the coefficients 8 without specific assumptions on the distribution of unobserved
stochastic terms or other functional form aspects; in other words, when the true form of the
function F is misspecified or unknown.

And this paper proposes an approach for studyin;g £ based on estimation of average behavior-
al derivatives, and shows how information on the marginal distribution of X can be used to esti-
mate average derivatives. In particular, a direct link between average derivatives and covar-
iance estimators is established, which shows how £ cén be estimated up to a scalar multiple by
the sample covariance between y and appropriately defined score vectors of the marginal dis-
tribution of X. B is also consistently estimated up to scale by the slope coefficients of the linear

equation of y regressed on X using the score vectors as instrumental variables.
Method

Let us consider the situation where data are observed on a dependent variable y, and an M-
vector of explanatory variables X; for i =1, ...... . N, where M>2. (yi, X,.), 1 =1, ...... , N,
represent random drawing from a distribution D whiéh 1S absolutely continuous with respect to
a o -finite measure v, with Radon-Nikodym density P (3, X) = @D/ dv. P(y, X) factors as P (y,
X) =q 3/X)p (X), where p(X) is the density of the marginal distribution of X. The conditional
density ¢ (|X) represents the true behavioral econometric model, which we assume permits the

conditional expectation E (y|X) to be written in the form
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(1) EGIX)=F(a+Xx8) =F(2)

for some function F, where @ is a constant, 8= (8, ......, By) " is an M-vector of constants,
and Z is defined as Z =a +X'S. 1 can refer to Z as an index variable, with (1) a single index
model. This framework is very general, subsuming many limited dependent variables models,
but is not restricted to such models. Before proceeding to specific examples, it is useful to note a
generic special case of (1). Suppose that Z*'is a general index variable such that e=Z*—Z7 is
independent of X; then if E (y[X, ¢) =F*(Z*) for some function F*, (1) is implied. This includes
many Amodels that employ a latent variable Z*=a + X' +e, where e is independent of X. Note
also that this implies that behavioral variables can be omitted from X without affecting the re-
sults, provided that the omitted variables are independent of the included ones". I now turn to
some specific examples;

EXAMPLE 1 ~——

BINARY DISCRETE CHOICE: Suppose that y represents a dichotomous random variable mod-
eled as y=1 if ¢>— (e +X'8), and y=0 otherwise. Here, E (y|X) =F (a + X'8) is the probabil-
ity of y=1 given the value of X, with the true function F determined by the distribution of e. If
e is distributed normally with mean O and variance 62, then the familiar probit model results,
with F (a+XB)=C ((a-f-X'ﬂ) /), where C is the cumulative normal distribution function.
Logit models, etc., can easily be included.

EXAMPLE 2 —— ;

TOBIT MODELS: Suppose that y is equal to an index Z* only if Z* is positive, as in the cen-
sored Tobit specification y=a +X'B+e, if e>— (e +X'8), and y=o otherwise. Alternatively, if
y and Y are observed only when ¢ >— (a +X’8), we have the truncated Tobit specification.
EXAMPLE 3 —

DEPENDENT VARIABLE TRANSFORMATION: Suppose there exists a function g (») such
that the true model is of the form g (y) =a +X'8 +e, where g (y) is invertible everywhere except
for a set of measure 0. A specific example is the familiar Box-Cox transformation where y )
=a+XB+e withy V' =[(p*—1)/2] for A0,y ¥ =In(y)for 2 =0.

These examples serve to illustrate the wide-spectrum of models covered by the single index
form (1) with general function F, and many examples can be found. Multiple index models will

be considered later.
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Now, we turn to the other required assumption. X is assumed to be continuously distributed,
having support Q of the following form.?
(ASSUMPTION 1: Q is a convex subset of RM with nonempty interior. The underlying measure
v can be written in product form as v=v_v*vx, where vy is Lebegue measure on RM)

Therefore, no component of X is functionally determined by other components of X, and no

two components of X are perfectly correlated. Denote I (X) as the score vector® of the marginal

density p(X) as:

_ dlnp(X)

(1) 1x)= 53X

The main regularilfy conditions on the marginal density p (X) are given in the following
assumptions.

(ASSUMPTION 2: p (X) is continuously differentiable in the components of X for all X in the
interior of Q. E(1) and E(ll") exist.)
(ASSUMPTION 3: For X€d Q, where d Q is the boundary of £, we have p(X) =0.)

ASSUMPTION 3 allows for unbounded X s, where @ =R™ and d Q =0. While the majority of
the results employ ASSUMPTIONS 2 and 3, the incorporation of discrete (qualitative) explana-
tory variables will be discussed later.

Many of the results will apply to a general random variable 7 and its conditional expectation
E (}7|X) =G (X) . For expositional simplicity, I refer to derivatives of conditional expectations,
such as 8 G/ 9 X, as behavioral derivatives. The regularity condition required for a general ran-
dom variable 7 holds if (, G (X)) satisfies CONDITION A:

(CONDITION A: G (X) is continuously differentiable for all X € Q, where Q differs from Q by
a set of measure 0. E(5), E(8G/9X), and E (Ij) exist.)

The main regularity condition on the behavioral Ihodel (II) is contained in ASSUMPTION 4.

(ASSUMPTION 4: (a) (y, F(a+X'B)) satisfies CONDITION A. E (dF/dZ) is non-zero. (b) (X,

"
X,)- satisfies CONDITION A for eachj =1, ......, M.)

This completes the list of main assumptions. While somewhat formidable technically, these
assumptions are collectively very weak.

The main thrust of this paper concerns how information on the marginal density p (X) can be

used to estimate £ up to scale. Consequently, the majority of the exposition assumes that the
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value of I (X) at each X, is known, and denoted I, =1 (Xi), 1=1, ...... , N. Use of empirical
characterizations of p(X) will be discussed later. Finally, sample averages are denoted via over-
bars as in =2,y,/N, with the means of y and X denoted as #,=E (y) and ,u,X=E.(X). Sample
covariances are denoted using 'S as in SLV:ZU{—D (»;—7) /N, with population counterparts de-

noted using 27 as in 25, =Cov (I, y).
Verifications and Polemical Points

(1) Behavioral Derivatives and Covariance Estimators .. .. ..

Here, I consider a fundamental connection between derivatives and covariance estimators that
is the basis of the consistency results of the following section. This connection is given in the
THEOREM 1 which is interpreted after the proof.

THEOREM 1: Given ASSUMPTIONS 1-3, if (5, G(X)) satisfies CONDITION A, then
3G, NS
(1) E[—é;X—]—E(z X)) =25

*Proof of THEOREM 1 ——:
Let X, denote the first component of X, and X, the other components, so that X= (X, X,)".
For a given value of X, denote the range of X, as w (X,) = {X,[ (X, X,) "¢ Q. Now, apply

Fubini’'s THEOREM to write E(9G/9X,) as

W) [ Sy Wa=[[ [ » aG X) p (X)do, (X,) |du, (X,)

1

The result that E(9G/ 93X ,) =E(I(X)7) is implied by the validity of the following equation:

26N . ap(X)
WV Loy Tax Wi 0 == [ 600228, x)

_ since the right-hand side of (V) simplifies to

op(X)

I R e ICOR -~ Onh
“0

G(X[ ] p(X)dv, (X,).

@ (xp)

By inserting (VI) into (IV), E(9G(X)/0X,) =E (I, (X)G (X)) is established, and by iterated
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expectation, E (I, (X)G (X)) =E (i, (X)5). To establish (V), note that the convexity of Q implies
that w (Xb) is either a finite interval [a, b] (where a, b depénd on Xd), or an infinite interval of
the form [a, o], (— o0, b], or (— 0, ©0). Supposing that w (X,) =|a, b], integrate the left-hand

side of (V) by parts as

v [ aac)gX)p( =— [0 ap(X v, (X,) +G (0, Xp)p b, X,) =G (@, X,)pa.

X,).

The latter two terms represent G (X) p (X) evaluated at boundary points, which vanish by
ASSUMPTION 3, so that (V) is established for w(XO) =[a, b). For the unbounded case w (X,) =
[a, o0), note first that the existence of E (5), E(2G/ 9 X,), and E (I, (X)5) respectively imply
the existence of E (G (X) [X,), E(8G/9dX,/X,), and E (I, (X)G (X) |X,). Now let us consider the

limit of (VII) over intervals [a, b], where b—>o0, rewritten as

(VI limG (b, X,)p (b, X,) =G (a, X))

b op(X
_G(a,XO)p(a,Xo)ﬂygf a;:)((X)P X)dvl(X1)+}ijg]bG(X) axl)dvl(Xl)
=Gla, X )p(a, Xy) +po (X E[ X, lxl —po (XD EW, (X)G X)) X,).

So that C =lim G (b, X,)p (b, X,,) exists, where p,(X,) is the marginal density of X,. Now sup-
pose that C>0. Then there exists scalars ¢ and B such that 0<e<C and for all b>B,|G (b, X,)p
(b, X,) —Cl<e. Therefore, G (X}, Xo)p (X;, X;) > (C—€)]5c), Where |5, is the indicator
function of [B, o). But this implies that p, (X ) E (G (X) |X) =
fG (X, X p (X, Xo)dv, (X)) > (C—e) fIIB_oo)dvl (X,) =00, which contradicts the existence
of E (G (X) |X,). Consequently, C>0 is ruled out. C<O similarly contradicts the existence of E
X) 1X). Since C=1imG (b, X,)p (b, X,) =0, and G (a, Xo)p (@, X,) =0 by ASSUMPTION 3,
equétion (V) is valid for w (X,) =|[a, ). Analogous arguments establish the validity of (V) for
w(X,) = (=0, a] and w (X)) = (— o0, ). The second equality of (III), E (i, (X)) =Cov (I, (X),
9), is true becasue the mean of I, X) is 0% . The proof is completed by repeéting the same de-

velopment for derivatives of G (X) wiht respect to X,, ......, Xy QED.
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THEOREM 1 is of significant theoretical interest. It says that the average behavioral deriva-
tive E(9 G/ 9 X) can be written as the covariance between 7 and a function of X; namely [ (X).
The form of 1(X) does not depend on the behavioral relation E (5]X) =G (X): 1(X) is determined
by the marginal density p (X). Thus, THEOREM 1 establishes a general link between behavioral
derivatives and covariance estimators that does not depend on assumptions on the form of
behavior® . The proof is extremely simple, based on integration-by-parts. An useful intuition for
THEOREM 1 can be obtained from its connection to results in aggregation theory. In particular,
THEOREM 1 reflects the local aggregate effects on E (5) of translating the base density p (X).
To see this connection, consider the unbounded case where Q =RM. Suppose that the base de-
nsity is translated by an M-vector 8: p(X) is altered to p (X-8) for all X. The value of E () af-

ter this translation is given as
(1X) EG6)=[ GX)p(x—0)dv.

By a change of variances, E (7|8) can be written as
X) EGIO)=[ Gx+6)p(x)av.

The local aggregate effects of the translation are the derivatives 9 E (7/6)/ 9 8 evaluated at

6=0%. Differentiating (IX) under the integral sign and evaluating at § =0 gives

9E@F0)
(XD —ae—-fQG(X)

op .
aﬁdv——

J,6 002525 av= [ 6 (00100p (0 an

where the latter equality reflects that I (X) equals daln p(X—8)/ 3 8 evaluated at §=0. Simi-

larly, differentiating (X) gives

dE(0) 1 aG

(X11) 50 —Ja aHP(X)dU:
oG
/QW (X)dv.
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Collecting the equalities of (XI) and (XII) gives E (G (X)1 (X)) =E (2 G/ @ X), which underlies
equation (III) of THEOREM 1.

THEOREM 1 has a simple geometric explanation. For evaluating the mean E (#) under trans-
lation, one can average G (X) over the distribution p (X) shifted by 8 (equation (IX)), or one can
shift G (X) by —#@ and average over the distribﬁtion p(X) (equation (X)). The local effects on
E (§) can be computed from either perspective (equation (XI)and (XII)) to yield the same value.
Equation (III) exhibits this equivalence.

(2) Consistent Estimation of Scaled Coefficients ......

This section indicates how to estimate 8 up to scale for single index models of the form (1).
The ITEM (2)-1 indicates the basic approach and proposes a covariance estimator and an in-
strumental variables estimator. The ITEM (2)- 2 discusses immediate extensions of the basic

results.

ITEM (2)-1: The average derivative approach to estimation
Begin by considering a precise empirical implication of the single index model form E (y|‘X) =
F(a+ X’'B) . Clearly, the conditional mean of y depends on X through the value of X'8. By ex-

ploiting differentiability, a precise restriction of the single index form is given as

(XIII) ==

OEW|X) OF a+X,3)
oX ~[iz]

Thus, @ E (y|X)/ @ X is proportional to 8, although the scale factor dF/dZ will depend on the
value of X chosen, The basic approach in this paper is to focus on the average of the constraint

(XIID):

[a (vIX)] E[

(XIV) E ] =E[%]~/9 =78

Where y=E (dF/dZ) exists and is nonzero by ASSUMPTION 4. Clearly, any consistent estima-
tor of the average derivative E (9 F/ 3 X) is a consistent estimator of 8 up to scale. Two natu-
ral consistent estimators are suggested by THEOREM 1. Firstly, I can define the estimator d, as

the sample covariance between.y; and [;:

(XV) dy=S,,.
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The second estimator is more closely related to standard regression estimators, such as the
OLS coefficients of y regressed on X. Define d as the instrumental variables coefficients of the

regression

(XVD)  y,=¢+Xd+a,

obtained uvsing( 1,1,)" as the instrumental variable, namely
(XVI)  d=(s,,)7's,,.

The consistency of ‘20 and d for af follows immediately from THEOREM 1, as in THEOREM 2.
THEOREM 2: Given ASSUMPTIONS 1 -4, &0 and d are strongly consistent estimators of 78,
where Yy =E (dF/dZ). |
% Proof of THEOREM 2 ——

The Strong Law of Large Numbers implies that lim S, =24, THEOREM 1 and (XIV) imply
that lim d =78 as. If lim S, =X, = I, an M%M identity matrix, then lim d =78 as. follows,
In view of ASSUMPTION 4 (b), THEOREM 1 can be applied with y=X; for eachj=1, ..., M.

Carrying this out gives

=1 Q E. D.

The two estimators (30 and d appear very similar; however in general they are not first-order

(v/N) equivalent. In particular,
(XVID) /N (d~dy) =+/N (5, — 1) 2

Since lim &Oza,@¢ 0, and \/7\/—(5{1 — 1) in general has a nontrivial limiting distribution,
V' N (@ —d,) will not vanish as N— 0. For expository purposes, I will refer to d for the re-
mainder of the exposition; however, all consistency results can be extended to (307). The connec-
tion to the aggregate effects of translation permits a further interpretation of the scale factor
Y=E (dF/dZ) . The structure of the single index model (I) implies that the local aggregate
effects of translation are pfoportional to the parameters of interest. In particular, insert (XIII)

into (XI), giving
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5E (5]0)
Y, deZ’B (X)dv=ag.

(XIX)

This appearance of £ is due to the correspondence between density translation and the linear
form of the index Z=a +X’A. To interpret ¥, note that under translation, the marginal distribu-
tion of Z is shifted by the parameter 7 =86'8, with the mean of Z increased by 7. (XIX) can be
regarded as the chain rule formula OE (y) /08 =(dE (y)/d7)(07/98), where 27/98 is
equal to B. The scale factor ¥ is equal to dE (y) /d7, the effect on E (y) induced by a change in
the mean E (Z) of the index variable Z.

ITEM (2)-2: Extraneous variables and multiple index models ——:

The approach of parameter estimation via average derivatives easily extends to more general
models than those relying on a single index. In this ITEM, I consider some immediate extensions,
namely to models with extraneous variables and multiple index models. Begin by expanding the
notation to consider two sets of explanatory variables; an M,-vector X; and an M,-vector X,,
distributed with density p(X,, X,)®

Consider first the case where X, represents extraneous variables, in that the behavioral mod-

el for y implies
(XX) EWlX,, X,)=F(a,+X,'8,, X,)=F(Z,, X,)

for some function F with constant coefficients a,, #,, and Z, =a; +X,"£,In this case, 8, is

proportional to the (partial) derivative of F with respect to X

aE(YIXsz) _ a [

(XX1) X,

18
so that the average derivative is proportional to £:
(XX1)  E[5%~ aX ] E[ ]ﬂl 716

THEOREMS 1 - 2 can be applied as long as the appropriate analogues of ASSUMPTIONS 1 -

4 applied to X, are valid. In particular, the proof of THEOREM 1 will apply to individual com-
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ponents of X, provided that no two components of X, X, are perfectly correlated, and that the
conditional density p,° (X, [X,) vanishes on the boundary of X, values for each value of X,
Under these conditions, the sample covariance d 10=S$,,, consistently estimates VAN 2T
where the partial score I,,=1, (X, X,,) is defined via

aln p(X,, X,) _ 2ln (X 1X,)

(XX 1, (x,, x,)=— 3%, = 53X,

Moreover, 7,-8, is consistently estimated by the slope coefficient estimates cil of the linear

equation
(XXIV)  y,=c¢,+X,d,+i,

obtained by instrumenting with (1, 1,;)". Thus, the extraneous variables X, are accommodated
in the estimation of £, by modification of the appropriate instrumental variables, to reflect the
joint distribution of X'; and X,. Clearly, if X, were distributed independently of X, then X, can
be ignored in the estimation of 8, up to scale” . This extension provides an initial response as
to how to accommodate discrete explanatory variables into the analysis. If X, is composed of
discrete variables, an approach based on average derivatives is not obviously applicable to esti-
mating effects of X,. However, the coefficients of the remaining continuous variables X, can be
estimated up to scale by using the score vectors of the conditional density of X, (given the
observed values of Xz) as instrumental variables. Consequently, while the analysis is silent on
how to estimate coefficients of discrete variables, their presence does not prohibit the estimation
of continuous variable coefficients up to scale. Putting aside this proviso on discrete variables, I

10)

now turn to multiple index models™"’. All relevant points are exhibited by two index models, so

assume that X= (X,’, X,")" is composed entirely of continuous variables with M,> 2 and M,>

2. Suppose that the behavioral model implies the following two index form:
C(XXV) EGX) =F(a,+X,'8,, a,+X,'8,)=F(X,, Z,)

where Z,=a,+X,'8, and Z,=a,+X,'8, represent the two index variables. The derivative of

the conditional expectation now takes the form
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QEWX) _ oF _
X  9X az]’gl aZZ]’ﬂZ'

(XXVI)

So that the average derivative is

a, B,

(XXVII) E[ ] = [azﬂzl

where ¥, =E(9F/9Z) and 7,=E(9F/9Z,) are scalar constants. Thus a consistent estima-
tor of the average derivative will estimate 8, and £, up to scale; however the scale factors 7,
and 7, will differ in general. Such a consistent estimator has already been established, provided
that y, F of (XXV) obey CONDITION A. Namely, the estimator d of (XVII) consistently esti-
mates E (@ F/ @ X), so fhat its components corresponding to X estimate 8 up to scale, the main
modeling limitation of this result is that no two componepts of X, and X, may be functionally
related or‘ perfectly correlated. Thus, the index variables Z, and Z, may have no common com-
ponent variables, an exclusion restriction that is required ‘for estimating both 8, and 8, up to
scale using average first derivatives. The following example gives a two index model, where 7,

=1 a priori.
Conclusion

This paper proposes an approach to parameter estimation based on average behavioral de-
rivatives, and applies the épproach to the estimation of B ub to scale in single index models.
The proposed estlmators explicitly utilize 1nf0rmat10n on the marginal distribution of the ex-
planatory variables in the model. The framework is 1llustrated using several examples of limited
dependent variables models, and extended to multiple index models. The asymptotic biases in
OLS coefficients are characterized vis-a-vis the distribution of explanatory variables. There are
two major advantages of the proposed estim.ator d First, d is nonparametric to the extent that it
is robust to many specific functional form and stochastic distribution assumptions. If a particu-
lar application requires only estimates of the ratios of components of 3, then d will suffice. In a
general application where different sets of assumptions give rise to different estimates of &, d
will provide a benchmark estimate for choosing the best specification. Given parametric model-
ing of the explanatory variable distribution, the precision of the components of d can be mea-

sured, and tests of scalefree on the value can be performed. The other advantage of d is com-
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putational simplicity. Once the distribution of explanatory variables is characterized, d (as well
as &0) 1s a linear estimator, computed entirely from sample covariances. This suggests that im-

plementation may be particularly easy and inexpensive, especially for large data bases.
Notes

1) This framework differs from that of Chung and Goldberger and Deaton and Irish, since those papers
only require e to be uncorrelated with X.

2) The support  is defined as the closure of the set X - eRM|p(X) >0} .

3) The terminology is due to the fact that I (X) is the score vector of p with respect to a translation pa-
rameter.

4)TmSmsmannmmgmaCOMMHONAiswmﬁMbyyzcuﬁ=1,awmmmvm@maam
by applying (V), (VI).

5) A similar link is used to establish the consistency of OLS estimators for the standard linear model,

namely, the functional form assumption that E (5|X) =G (X) =a + X8 implies Cov (X, 7) =2l yg OF
Cov (233, X, y) =8. By the same assumption, the behavioral effects are 8= 3G (X)/dX=E (8¢ X)
/9X). |

6 ) Stoker gives a general development of local aggregate, or macroeconomic effects.

7) Other consistent estimators of af include the production moment estimator &=Ziyi/N, the reduced
form OLS estimator of the slope coefficients of y,=c,+d X, +u,, where X,= (X, ) ~'L, and the
weighted OLS ESTIMATOR PROPOSED by Ruud. None of these estimators are first-order equivalent
to either d or &0 in general.

8) This expanded notation is used in this ITEM only.

9) X, then takes on the same role as the random term e of this ITEM.

10) Notice that &1 of (XXIV) consistently estimates 7,8,, and that the analogous coefficients from the

linear equation with X, as explanatory variables will estimate 7.8,

® )
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CO/MNRTIE L 2, EGIX) =F(a+X'B) O &5 2igEEKE TV ORKL T oHEE
MEEEZEZAH. ZOFMEIIROBY. 1. TEHIRTER—KROMOE L E£HHHETF L 0M
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L. 3. X OFHRI 7R b EAOEARSHIEET £ FEERORENY b

VEDHEE. 4. GIREES SRBERETFVERCLADEEREOHMASCD. 5. &

OIE¥ED, WA T 22 5% BEARESGRIFE TV ENRT 21I8ERKEFV~DHR. 6.

FEREBOHEET OBEXRMG/HD, X OG5 EFT VI L) TORRBBREILREC X AHEE.

7EBE#y O, X ® OLS BEIGEIREDBREINA T AL HHEE.

(fH5) | AMEHEEDI12A28~308, KE D 7 TRETHME S 7219874 EEIRREHRAEHF &
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— 185 —



